Archives

Little Transformers: Bolitotherus cornutus – the first dinobeetle?

Little Transformers are back with another coleopteran representative. I usually use this platform to present insect adaptations from the tropics, however this time I am focusing on a local species with a wide distribution in central and eastern North America: the forked fungus beetle (Bolitotherus cornutus). It is one of the most iconic North American beetle species, and I remember that flipping through pages of insect books as a kid, there was always an image of a forked fungus beetle under the darkling beetles section. In fact, as soon as I arrived to Canada this was the first species I sought after. And as much as I hate to admit, I looked for it in all the wrong places. I thought it was associated with wood (it is, but in a more indirect way), and cracked open fallen logs in search for adults. Of course I found nothing. Eventually the first fungus beetles I found were under a huge woody bracket mushroom in a conservation area near Price Edward, Ontario. Today this makes me laugh because back then we drove so far, and a year later I found out that I can find the beetles within just a mere 5 mins bus ride from my house.

I must say I am puzzled why this beetle is shown as an example for darkling beetles in books. Family Tenebrionidae is big and diverse, but there are some common characteristics that stay uniform across different genera. Bolitotherus cornutus, however, is not exactly a “typical” darkling beetle. And even though this beetle is widespread and common, it is often hard to find. When I presented this beetle in a talk to a group of local naturalists and asked how many people have seen it in the wild, only one hand was raised, surprisingly or not it came from a mushroom expert.

A pair of forked fungus beetles (Bolitotherus cornutus), dorsal view

A pair of forked fungus beetles (Bolitotherus cornutus), dorsal view

At first glance, forked fungus beetles look like they were designed by a drunk military engineer. Like most members of tribe Bolitophagini, they are built like small tanks, and to some extent they also look like ones. A compact and rugged body, sealed to the outside thanks to the tight elytra forming a protective shell. The body surface is heavily granulated to provide further shock protection in case of falling to the ground, as well as camouflage against tree bark and dried bracket mushrooms that the beetles feed on. Male beetles have two sets of horns, each with a different function.

Male forked fungus beetle (Bolitotherus cornutus)

Male forked fungus beetle (Bolitotherus cornutus)

The curved thoracic horns are hairy and used for pushing an opponent off the surface while fighting for territory and mates. The length of these horns is variable depending on various conditions (both genetic and environmental), with two extreme male morphs: major with long arching horns, and minor with short stout horns.

Male forked fungus beetle (Bolitotherus cornutus), frontal view. The thoracic horns can be long!

Male forked fungus beetle (Bolitotherus cornutus), frontal view. The thoracic horns can be long!

The other set of horns are found on the beetle’s head. These are called cephalic horns and they are sometimes missing. Their function is very peculiar: males use them as a pitchfork to scrape, lift, and throw off minor individuals that cling tightly to females. By the way, other members of Bolitophagini have horns as well, for example genus Byrsax has impressive horns that make it look like a perfect samurai helmet!

Another frontal view of a male forked fungus beetle (Bolitotherus cornutus), showing its orange pom-poms.

Another frontal view of a male forked fungus beetle (Bolitotherus cornutus), showing its orange pom-poms.

Ok, but what does Bolitotherus cornutus have to do with Little Transformers? Sure, touch the beetle and it folds its legs tightly close to its body, creating an impenetrable structure. We have seen similar defense behavior in other beetle transformers, like the Ceratocanthinae pill scarab and the shiny leaf beetle. In addition, the fungus beetles also secrete a smelly mixture of chemicals when disturbed. But the reason I am mentioning it here as a transformer is because of its horns. You see, many phylogenetically distant species share similar morphological adaptations. Studying these cases of convergent evolution can teach us something about the processes these adaptations go through, as well as their function. To be more specific, how is this…

Portrait of a male forked fungus beetle (Bolitotherus cornutus)

Portrait of a male forked fungus beetle (Bolitotherus cornutus)

…any different from this?

Portrait of Machairoceratops cronusi. Art by Andrey Atuchin, used with permission.

Portrait of Machairoceratops cronusi. Art by Andrey Atuchin, used with permission.

This fabulous artwork by Andrey Atuchin shows Machairoceratops cronusi, a recently described member of the rhino-like dinosaurs, and a relative of the famous triceratops. Yes, Bolitotherus cornutus is basically a miniature six-legged dinosaur in disguise. Now I know what you are thinking. The beetle’s horns are hairy, and the dinosaur’s aren’t. That is probably true. The Machairoceratops dinosaur might have had hairy horns. We don’t know for sure (ask yourself why). But regardless, you have to agree that there is some uncanny resemblance between the two animals’ head structure. A set of flat horns arching over the head, another pair of spiky horns pointing upwards from the head, a granular neck shield… Of course, we don’t know how the dinosaurs used their horns, but we can speculate. Maybe observing the forked fungus beetles fighting can help us understand a behavior in an animal that no longer exists. The relationship between form and function in animal horns is a fascinating topic for discussion and hopefully I will write about it in more depth in the future. But I cannot help it, the more illustrations of Machairoceratops cronusi I look at, the more I see forked fungus beetles in them. It is almost as if someone placed an enormous beetle on top of the dinosaur’s skull.

Bracket mushrooms (Fomitopsis betulina) growing on birch. Bolitotherus cornutus beetles prefer to feed on old mushrooms (dark-colored, coated with moss and algae in the photo) rather than fresh ones.

Bracket mushrooms (Fomitopsis betulina) growing on birch. Bolitotherus cornutus beetles prefer to feed on old mushrooms (dark-colored, coated with moss and algae in the photo) rather than fresh ones.

The diet of forked fungus beetles is unique and restricted to bracket mushrooms (such as Fomitopsis, Ganoderma, Ischnoderma) growing on weak standing trees as well as fallen logs (by the way, they are not the only darkling beetles feeding on mushrooms). They prefer old, hardened bracket mushrooms.

Major male forked fungus beetles (Bolitotherus cornutus) fighting on top of a bracket mushroom. Notice that their granular body surface often attracts mites and tiny springtails.

Major male forked fungus beetles (Bolitotherus cornutus) fighting on top of a bracket mushroom. Notice that their granular body surface often attracts mites and tiny springtails.

On spring and summer nights males gather on the mushroom surface, where they engage in fighting tournaments to win territories (=food for the them and their offspring) and matings with the females waiting nearby. What is even more interesting is that while major males with impressive horns are distracted fighting and showing off their capabilities, the minor males sneak up on them and mate with some of the females.

A minor male forked fungus beetle (Bolitotherus cornutus) guarding a female after mating

A minor male forked fungus beetle (Bolitotherus cornutus) guarding a female after mating

The courtship process is long and elaborate, and includes climbing over the female and stridulating (acoustic communication). Males also tend to stay and guard the female to prevent other males from mating with her. After mating, females lay their eggs separately on the mushroom surface, and cover each egg with frass. This protects the eggs from desiccation as well as from predators and parasitoids.

Bolitotherus cornutus eggs appear as dark bumps on the surface of a bracket mushroom (there are 4 eggs in this photo)

Bolitotherus cornutus eggs appear as dark bumps on the surface of a bracket mushroom (there are 4 eggs in this photo)

Within 1-2 weeks the larvae hatch and immediately burrow into the mushroom. They are not the typical darkling wireworms, but instead look like hairy, soft-bodied grubs.

Young Bolitotherus cornutus larvae

Young Bolitotherus cornutus larvae

They spend their entire life inside their feeding substrate. The mushroom fruit body protects them from the elements, so they also use this space for pupation. Surprisingly, some larvae grow faster than others, and complete their metamorphosis before winter. This means that the beetles can overwinter inside the mushroom as larvae, pupae or fresh adults.

Male forked fungus beetle (Bolitotherus cornutus) emerging from a bracket mushroom

Male forked fungus beetle (Bolitotherus cornutus) emerging from a bracket mushroom

Male forked fungus beetle (Bolitotherus cornutus) burrowing into decomposing wood

Male forked fungus beetle (Bolitotherus cornutus) burrowing into decomposing wood

If you live in North America within the distribution range of this species I encourage you to get out there and look for these magnificent creatures. First of all, it is fun, and you might find other cool stuff while searching. And second, these beetles are really cool, and they can teach us a lot. They are also embarrassingly easy to keep, all they need is some pieces of the mushrooms they were collected on, the slightest humidity, and that’s it. They live for a few years as adults and readily breed in captivity, displaying all the behaviors mentioned above and more!

An active captive colony of forked fungus beetles (Bolitotherus cornutus)

An active captive colony of forked fungus beetles (Bolitotherus cornutus)

Adult forked fungus beetles (Bolitotherus cornutus) aggregating on the mushroom underside

A closeup on adult forked fungus beetles (Bolitotherus cornutus) aggregating on the mushroom underside

Hello, Hedwig (snowy owl)

Birds, on this blog?? I must be out of my mind. Posts covering birds are almost unheard of on this website. It’s not that I do not find birds fascinating. There are just so many bird-dedicated websites out there that I do not feel I can contribute anything unique, and if I want to be completely honest – I am not exactly the best bird photographer out there. I will always prefer looking at insects and other ground-dwelling creatures. This is something that I need to change: I need to make a habit to switch from arthropod-seeking to bird watching once winter hits Canada and it gets too cold for insect activity. I decided to force myself out and go searching for snowy owls in my area. Living in Mississauga on the shore of Lake Ontario, I always knew I have a good chance of finding snowy owls, but it takes dedication to look for birds in below-zero temperatures, even more so in my case because I am fine-tuned for searching smaller animals.

A resting snowy owl (Bubo scandiacus) is like a sitting duck. On a dock.

A resting snowy owl (Bubo scandiacus) is like a sitting duck. On a dock.

Snowy owls (Bubo scandiacus) are truly stunning animals. It is one of the largest and heaviest owl species, and easily recognized thanks to its unmistakable appearance: a hefty white bird, with a black beak and bright yellow eyes. Female snowy owls are bigger and heavier than males, and their feathers are mottled in black. The smaller males are entirely white.

Who left this pile of snow on the dock? hehe

Who left this pile of snow on the dock? hehe

It's transforming!

It’s transforming!

Snowy owl (Bubo scandiacus). Try not to get hypnotized by these eyes.

Snowy owl (Bubo scandiacus). Try not to get hypnotized by these eyes.

Despite being big and showy, snowy owls made it to the mainstream only in the late 90’s thanks to the Harry Potter book series. In the story, Harry has a pet snowy owl named Hedwig, used for delivering messages to other wizards, but also serving as a companion to Harry. The popularity of snowy owls has increased also thanks to a famous meme, perhaps one of the oldest internet memes in existence, focusing on their somewhat goofy facial expressions.

These owls are native to and breed in the Arctic tundra. Every year a part of the population migrates south to winter in the North American prairies, whereas the others remain in the Arctic year-round. The migration is triggered by seasonal population fluctuations of their prey – small mammals, mainly rodents. When hungry they will go after birds as well.

Snowy owls probably hunt small rodents like this meadow vole (Microtus pennsylvanicus)

Snowy owls probably hunt small rodents like this meadow vole (Microtus pennsylvanicus)

Snowy owls are very unique among owls for nesting in shallow mounds that they build on the ground. Even outside of the breeding season they stay active close to the ground level. Because they prefer open habitats, they are often found in areas disturbed by human activity. They utilize boat docks, airstrips, and arable land, which probably host their prey. Here in Southern Ontario I bet they hunt voles because, let’s face it, those are quite common in semi-urban areas, and judging by my experience they are extremely easy to catch.

O RLY?

O RLY?

The nice thing about snowy owls is that they do not seem to care too much about humans. Ok, I should clarify this – they will not care *only* if you respect their privacy and keep your distance. I want to prevent a situation where people harass these beauties. It is also important to mention that this species is currently classified as “Vulnerable” by the IUCN. When undisturbed, the owl will keep its position, and even display some natural behavior like cleaning, scratching, and… grinning. However, once the observer gets too close and is spotted by the owl, it ends right there. A snowy owl will not hesitate to take flight if it feels threatened. If you decide to go and look for these birds please be respectful, and you will be rewarded with an unforgettable experience that will stay with you forever.

Little Transformers: Myrmarachne formicaria

Little Transformers is back! And this time our star is a small jumping spider that goes out of its way to masquerade as an ant.

I am often accused for not writing about topics related to Canada on this blog. While this is not entirely true, I could have without doubt posted more about local critters. It is a great time to do so now, as I will be taking the opportunity to address several events.
Firstly, it is now October, and we are getting closer and closer to Halloween (Oct 31st). Nine years ago, the Arachtober initiative was born: why wait till the end of the month to celebrate spiders? Let’s celebrate them and other arachnids throughout the entire month of October! And so, during the month of October we give arachnids more exposure in hopes to educate the general public about these magnificent and important creatures.
Secondly, a new initiative is slowly forming, International Jumping Spider Day, on October 10th. The idea is to use the easily adored jumping spiders as the gateway arachnid for changing the often-negative public perception of spiders. I wholeheartedly support this idea and hope to see it catching on.
Lastly, a shameless plug: You may have noticed that this blog is nominated for the 2017 People’s Choice Awards: Canada’s Favourite Science Online. It is a huge honor to be included with other excellent science blogs and sites on the same list. If you like the content and stories that I post, you can show your appreciation by voting following this link. I wish to thank those who already voted in support of this blog. While this nomination has nothing to do with spiders, I thought it is a great opportunity to write a blog post about an arthropod found in Canada.

Female ant-mimicking jumping spider (Myrmarachne formicaria) wants your attention

Female ant-mimicking jumping spider (Myrmarachne formicaria) wants your attention

After this short introduction, it is time to present our first local Little Transformer, the ant-mimicking jumping spider Myrmarachne formicaria. It is one of the nicest looking spiders here in Ontario, and it is surprisingly abundant in its habitat. Alas, there is a small catch here. While this jumping spider is local, it is not native to Canada. This species was first detected in North America in 2001, and later established in Tommy Thompson Park in Toronto in 2015. It originates in the Palearctic region, more specifically Europe and Asia. Despite this, these spiders feel right at home in Toronto, as it seems that they are spreading away from the park containing the main population. This year, Sean McCann recorded Myrmarachne in Scarborough (east Toronto), and I found them in Mississauga (west of Toronto).

Female ant-mimicking jumping spider (Myrmarachne formicaria) masquerading as an ant

Female ant-mimicking jumping spider (Myrmarachne formicaria) masquerading as an ant

Myrmarachne formicaria is an elongated jumping spider that takes the appearance of a small ant, and here in Ontario it is associated with the European fire ant, Myrmica rubra, also an introduced species. Isn’t it interesting how these two non-native species managed to find each other on unfamiliar land? The spider has long and slender legs just like those of an ant, and the banded forelegs are slightly thicker to resemble antennae. The cephalothorax has a depression to echo the segmentation in ants separating head from thorax. The abdomen is long with a narrow connection to the cephalothorax, reminiscent of an ant’s petiole. Surprisingly, in this species the pedipalps (normally a distinguishing character between males and females) are swollen in females, a trait usually seen only in males. Males on the other hand have enormous toothed chelicerae that stick right out of their faces. I suspected this is a sexually selected trait used in fights for females, and this was later confirmed by Sean McCann (check out his amazing shots here).

Female ant-mimicking jumping spiders (Myrmarachne formicaria) have swollen pedipalps

Female ant-mimicking jumping spiders (Myrmarachne formicaria) have swollen pedipalps

Male duck-mimicking jumping spide... um, excuse me ANT-mimicking jumping spider. Quack quack.

Male duck-mimicking jumping spide… um, excuse me ANT-mimicking jumping spider. Quack quack.

This begs the question, why do Myrmarachne spiders look like ants? Do the spiders use their appearance to fool the ants into thinking they are members of their own colony in order to sneak up on them and prey on ant workers or larvae? Not really. For starters, the ant species approached by Myrmarachne formicaria are usually not visual creatures. They rely more on their chemical communication, using volatile pheromones, for navigation and recognition. Moreover, the spiders seem to deliberately avoid any contact with the ant workers. They may walk among the ants, but they always keep their distance from them. In fact, when I experimented and isolated a few spiders within a group of ants, the spiders chose to stay still, and only when the path was clear they made a run for it. I also noticed that the ants display an aggressive response when encountering a spider. So the ants are not the target of this mimicry. Who is? Us. Or more precisely, predators. You see, the spider not only looks like an ant and spend its time close to the ants, it also moves like an ant.

Myrmarachne formicaria always keep a safe distance from Myrmica rubra workers

Myrmarachne formicaria always keep a safe distance from Myrmica rubra workers

A recent study looked into the locomotion of Myrmarachne formicaria jumping spiders and found that they do not move like their peers. First of all, instead of jumping like most salticid spiders, they move forward in a series of short sprints. But they also move in a pattern that resembles the movement of ants following a pheromone trail, back and forth in a winding wave motion, instead of random strolling and stopping often we see in other spiders. If it looks like an ant and moves like an ant… it might be good enough to fool predators that it is an ant. And I can attest to this – it is extremely difficult to keep track of a Myrmarachne spider moving about in an area with ant activity. Look away, and you will need all the luck in the world to find it again. The spiders also benefit from being close to a colony of highly defensive ants. Myrmica rubra is easily alarmed and has its reputation when it comes to stinging intruders.

Some Myrmarachne formicaria feature a two-colored cephalothorax, to emphasize the part that mimics the ant's head

Some Myrmarachne formicaria feature a two-colored cephalothorax, to emphasize the part that mimics the ant’s head

If they do not hunt the ants, what do these spiders feed on? They seem to go after soft-bodied insects, and they are especially fond of dipterans: small flies, mosquitoes, midges etc’.

Male ant-mimicking jumping spider (Myrmarachne formicaria) feeding on a chironomid midge

Male ant-mimicking jumping spider (Myrmarachne formicaria) feeding on a chironomid midge

A closer look at the feeding Myrmarachne male reveals the weaponized chelicerae, used in fighting other males

A closer look at the feeding Myrmarachne male reveals the weaponized chelicerae, used in fighting other males

At this point you might ask yourself why I included this jumping spider in my Little Transformers series. Sure, it mimics an ant, but that’s it. Or is it? In order to qualify as a Little Transformer the arthropod needs to change something in its appearance to transform into something different. So far we have seen that these spiders move in an atypical fashion to jumping spiders. But there is one more thing they do to conceal their salticid identity. What is the one, fail-safe characteristic of jumping spiders? Those huge front eyes! If only the spider could hide them, it would look like the perfect ant. And they do exactly that.

I look at this spider and I see an ant staring back at me.

I look at this spider and I see an ant staring back at me.

Myrmarachne often wave their forelegs in the air to mimic the ants’ antennae, but the legs also hide their most recognizable feature, the bulging front eyes. Females seem to do a better job at this than males, transforming into ants right before our eyes.

Male ant-mimicking jumping spider (Myrmarachne formicaria). Even on a side-view I still see a weird duck...

Male ant-mimicking jumping spider (Myrmarachne formicaria). Even on a side-view I still see a weird duck…

What is most intriguing here is that the rear pair of eyes evolved to be very large, bearing a striking resemblance in their size and position to ant eyes.

Ant-mimicry is quite common among arthropds, and many species of jumping spiders deploy this strategy as an anti-predator defense or to assist in foraging. While some do not consider Myrmarachne formicaria as a case of perfect mimicry, it is a gorgeous spider with intriguing behavior. Besides, mimicry does not have to be perfect to satisfy our aesthetic desires. It only has to be good enough to benefit the spider’s survival.

Two horned darkling beetle – Neomida bicornis

Last week I met with Catherine Scott and Sean McCann, two talented naturalists and spider-enthusiasts (Catherine studies the mating behavior of black widows, and if you haven’t already, I recommend following her live tweets from experiments). It was great to go hiking together in the snow-covered woods, looking for arthropods hidden inside fallen logs. Before we went on the hike, they brought me a few entomological presents, one of them were lovely beetles that they found during a trip a week earlier.

A pair of two-horned darkling beetles (Neomida bicornis). Ontario, Canada

A pair of two-horned darkling beetles (Neomida bicornis). Ontario, Canada

These magnificent beetles are Neomida bicornis, a species of fungus-feeding darkling beetles (family Tenebrionidae). They are tiny, measuring only a couple of millimeters in length. To the untrained eye they do not even look like darkling beetles, these beetles are like jewels! Their body is very shiny, metallic green in color. The elytra have a bluish tint. Populations of Neomida bicornis in southern North America have an orange pronotum (a true feast of colors, for a darkling beetle at least). The males are characterized by four horns, two of which prominent between the eyes, and two smaller ones on the clypeus (=lip area) above the mouth. The females have no horns. I admit, I have a soft spot for horned insects. What a fabulous gift, thanks again you guys!

These beetle are tiny! That’s the tip of a regular ruler with a millimeters scale.

The female two-horned darkling beetle (Neomida bicornis) is hornless

The female two-horned darkling beetle (Neomida bicornis) is hornless

This species is not rare, but its way of life makes it hard to find: the adults and larvae feed on bracket fungi (polypores) and burrow into this tough substrate, creating inner galleries. According to Sean, these beetles were active inside the mushroom despite the somewhat low ambient temperatures. From what I learned about eastern North American fungus-feeding tenebrionids, they have overlapping generations. In other words, both adult beetles and their larvae can overwinter inside the mushrooms. I will probably try to confirm this at some point but first I need to find out how the larvae look like. They are not the only arthropods taking advantage of a polypore-type shelter from the cold weather.

Male two-horned darkling beetle (Neomida bicornis) inside a polypore mushroom

Male two-horned darkling beetle (Neomida bicornis) inside a polypore mushroom

Nailing that Megarhyssa shot – it’s all about flexibility

It is intriguing that I do not post much about North American insects. In fact, ever since I moved to Canada I became more and more obsessed with animals found in my home country (Israel). Some might say this is a common case of “you don’t know what you’ve got till it’s gone”, but this does not mean that North American insects are not exciting or interesting. On the contrary, there are many insect species I hope to see in person. One of these insects rewarded us with its presence during a day trip to Hilton Falls Conservation Area in Ontario. I thought I should write about it and share a little bit of the process of photographing it.

Giant ichneumon wasps (genus Megarhyssa) are some of the biggest North American wasps thanks to the females’ long (10cm) ovipositor, which is longer than the wasp’s own body. These wasps might look fierce but they are actually shy and harmless insects. They are parasitoids: their larvae develop as parasites living inside the body of other insects. The female’s ovipositor is therefore not a stinger, but an organ used to inject eggs into the larva’s host.

During our trip we came across an egg-laying female of Megarhyssa macrurus. I only had a couple of small lenses with me and no dedicated macro equipment, but still, I did not want to miss an opportunity to photograph a Megarhyssa during oviposition. I tried to go for a simple wide-angle macro style first:

Wide-angle photo of a female giant ichneumon wasp (Megarhyssa macrurus) during oviposition.

Wide-angle photo of a female giant ichneumon wasp (Megarhyssa macrurus) during oviposition.

Very quickly I ran across one of the problems I mentioned in this post. The wasp is so thin and delicate and easily gets “lost” in the background, even when it is slightly out-of-focus. To get a better result, I started to cut broad leaves and placed them like tiles in the background. This photo was taken with the same, non-macro lens as above. Surprising result!

Female giant ichneumon wasp (Megarhyssa macrurus) drilling in wood to lay eggs

Female giant ichneumon wasp (Megarhyssa macrurus) drilling in wood to lay eggs

Megarhyssa wasps attack the larvae of another wasp, Pigeon horntail (Tremex columba), which bore into dead wood. The female can detect tiny vibrations coming from inside the wood by the feeding horntail larvae. She then proceeds to egg-laying: she bends her abdomen, exposing her ovipositor from its flexible sheath, and starts drilling. When she reaches a horntail larva, she sends an egg all the way down the ovipositor and injects it to the host. The parasitoid wasp larva feeds on the host and kills it, and then pupates inside the wood. The new generation of Megarhyssa wasps will emerge as adults in the following summer.

Back to the process of photographing – The next thing I wanted was to test the flexibility of the lens (I always recommend doing this), so I took a few more “creative” shots at different angles. What I like about this photo is that you can also see some of the previous holes this female drilled using her ovipositor.

Giant ichneumon wasp (Megarhyssa macrurus) injecting eggs into horntail wasp larvae found inside dead wood

Giant ichneumon wasp (Megarhyssa macrurus) injecting eggs into horntail wasp larvae found inside dead wood

The last goal was to get a dreamy background, showing some of the light entering through the canopy. This was a bit tricky, because the wasp was facing down towards the ground. Since I do not have special equipment (such as an angle-viewfinder or a tilt-screen), I had to be creative and improvise. Unknowingly, I had my photo taken while trying to compose the shot. I was completely unaware of my pose because I was too focused on photographing, and I guess some of the poses I tried might have been embarrassing for my trip partners… To tell the truth, I had no idea my body was even capable of getting into these positions. If you look closely, you can even see the wasp in this photo, it is very big!

Flexibility is important while photographing insects!

Flexibility is important while photographing insects! Photo by Mio Konfedrat.

After much bending and neck-twisting I managed to get the shot that I wanted:

Female giant ichneumon wasp (Megarhyssa macrurus) in egg-laying

Female giant ichneumon wasp (Megarhyssa macrurus) in egg-laying

Nice to cross this incredible species off my “wanted” list.

Salamander Day: 2014

Every year when the right time comes (depending on my location), I make an effort to go out and search for salamanders and newts. What started as an attempt to photograph the elusive fire salamander (Salamandra infraimmaculata) in Israel has become almost an annual celebration to appreciate the local amphibian fauna.

Redback salamander (Plethodon cinereus)

Redback salamander (Plethodon cinereus)

 

Why salamanders of all things? Very early in my days as a naturalist I was under the impression that salamanders in Israel are super-rare. But at some point I realized that while they were uncommonly seen, it is not necessarily because they were rare. Salamanders have very localized populations, and the adult salamanders are active on the ground surface only a few days per year during the breeding season. You need to know exactly when and where to look for them, and then you can actually observe quite many individuals.

Spotted salamander (Ambystoma maculatum) from Ontario, Canada. Unfortunately I did not find them this year.

Spotted salamander (Ambystoma maculatum) from Ontario, Canada. Unfortunately I did not find them this year.

 

There are rare species of salamanders for sure, don’t get me wrong. And this is where knowing your local amphibian fauna plays an important role.
Salamanders, and amphibians in general, are not only super cute (see in the below photo) but they are also very important bioindicators. They breathe and absorb water through their moist skin, and they at a high risk of absorbing various chemical compounds found in their surroundings. As a result they are some of the first organisms to suffer from pollution or habitat disturbance (as well as many other factors). Surveying and monitoring the local amphibian populations can assist substantially in understanding their condition and the health of the whole ecosystem.

Portrait of the redback salamander (Plethodon cinereus)

Portrait of the redback salamander (Plethodon cinereus)

 

In the past few years I have been “celebrating” Salamander Day in southern Ontario Canada, where I regularly find four species of salamanders right after the snow melts: the common redback salamander (Plethodon cinereus), spotted salamander (Ambystoma maculatum), blue-spotted salamander (Ambystoma laterale), and the rarer Jefferson salamander (Ambystoma jeffersonianum), all showing stable populations. I am sure there are more species to be found; for example, I have been trying to locate a population of Eastern newt (Notophthalmus viridescens) but was unsuccessful. This year I was a bit too late in the season to search for salamanders because of a research trip to Israel. My intention was to photograph them for Meet Your Neighbours biodiversity project (a topic for a separate post) against a white background using a potable field studio. Unfortunately, I only found two species out of the four I usually find, but they were very cooperative during the quick photoshoot.

Jefferson salamander (Ambystoma jeffersonianum)

Jefferson salamander (Ambystoma jeffersonianum)

 

Portrait of Jefferson salamander (Ambystoma jeffersonianum)

Portrait of Jefferson salamander (Ambystoma jeffersonianum)

 

The setup I used for photographing the salamanders against a white background, for Meet Your Neighbours project

The setup I used for photographing the salamanders against a white background, for Meet Your Neighbours project

 

I encourage everyone to go out and look for amphibians in activity. And when you find them – be happy about it. It is a good sign that natural processes are functioning properly in your area (unless you are located in a part of the world where the only amphibians you can find are invasive species. Sigh… that is not a good sign).

Female Jefferson salamander (Ambystoma jeffersonianum) from last year's Salamander Day

Female Jefferson salamander (Ambystoma jeffersonianum) from last year’s Salamander Day