Archives

Compsus: glitter weevils with structural coloration

The insect world is full of great examples for flamboyant insects. From mosquitoes sporting feathery legs and electric blue scales, through the splash of vibrant colors in rainbow katydids, to shiny golden-green orchid bees and their mimics. But none are as dazzling as the glitter weevils of genus Compsus (family Curculionidae, subfamily Entiminae).

Short-snout weevil (Compsus sp.) from Mindo, Ecuador. It is hard to take all these colors in.

Short-snout weevil (Compsus sp.) from Mindo, Ecuador. It is hard to take all these colors in.

Compsus is a large genus distributed mainly in Central and South America, with one species occurring in North America. It contains around 140 species, mostly small to medium sized beetles of 0.5-2.5cm in length. Several species are considered as pests of citrus trees. The adult weevils feed on plant tissue: leaves, flower petals, and pollen, but they will also go for rotting leaves and fermenting fruits. The females oviposit egg masses on the aerial parts of trees. The young legless larvae hatch, drop to the ground, and burrow into the soil where they feed on the roots of the tree. At the end of its developmental stage the larva builds a chamber in the ground and pupates, and it will stay in this state for two months until the adult’s eclosion. Compsus weevils complete their life cycle within 5-7 months.

Another species of Compsus from Mindo, this one has a bit more metallic sheen to it.

Another species of Compsus from Mindo, this one has a bit more metallic sheen to it.

Compsus weevil feeding on rotting plant tissue

Compsus weevil feeding on rotting plant tissue

Freshly-eclosed short-snout weevil (Compsus sp.) use impressive mandibles to break out of the pupal skin. These scissor-like attachments drop later.

Freshly-eclosed short-snout weevil (Compsus sp.) use impressive mandibles to break out of the pupal skin. These scissor-like attachments drop later.

But what makes Compsus weevils so special, as well as other members of subfamily Entiminae, is their eye-catching colors. I would do these beetles a disservice if I didn’t explain where the colors come from, so things are about to get technical. Animal coloration is derived from spectrally selective light reflections on the outer body parts. There are two types of coloration:
1) Pigmentary (or chemical) coloration – occurs when pigments absorb scattered light in a narrow wavelength range. This type of coloration is the most common in animals.
2) Structural (or physical) coloration – achieved by nanometer-sized structures with changing refractive indices, causing coherent light scattering. Structural coloration is less common in the animal kingdom but it is widely encountered as well, and often structural colors are modified by spectrally filtering pigments.

Scales containing photonic crystals on the head of a Compsus weevil

Scales containing photonic crystals on the head of a Compsus weevil

Scales containing photonic crystals on the body surface of a Compsus weevil

Scales containing photonic crystals on the body surface of a Compsus weevil

The structures causing the physical colors are referred to as photonic crystals if they have properties (periodicity) that align with wavelengths of visible light. One-dimensional photonic crystals consist of parallel thin film layers of alternating high and low refractive index materials. These structures create the metallic and polarized reflections of cephalopods skin, the elytra of jewel beetles and scarabs, and the breast feathers of birds of paradise. Two-dimensional photonic crystals are structures with periodicity in two dimensions. An example for two-dimensional photonic crystals in animals would be the coloration of peacock feathers. Three-dimensional photonic crystals have been found in the scales of weevils and other beetles, but also in butterflies like the blue morpho.

Scales containing photonic crystals on the body surface of an Entiminae weevil (Eupholus schoenherri) from Indonesia

Scales containing photonic crystals on the body surface of an Entiminae weevil (Eupholus schoenherri) from Indonesia

Scales containing photonic crystals on the body surface of an Entiminae weevil (Eupholus schoenherri) from Indonesia

Scales containing photonic crystals on the body surface of an Entiminae weevil (Eupholus schoenherri) from Indonesia

Scales containing photonic crystals on the body surface of a Compsus weevil

Scales containing photonic crystals on the body surface of a Compsus weevil

Blue scales on the leg tarsus of an Entiminae weevil (Eupholus linnei) from Indonesia

Blue scales on the leg tarsus of an Entiminae weevil (Eupholus linnei) from Indonesia

In the case of Entiminae weevils, the adult beetles have strikingly iridescent scales, sometimes immersed in pits on the weevils’ elytra and legs. This gives the weevils a festive glittery look, as if they were covered with confetti during a big party. The reason for the bright coloration in weevils is mostly misunderstood. In some ways it may serve as camouflage in green species, but blue-colored species are very conspicuous so it remains unclear whether they advertise something to potential predators. I cannot complain: for me it is always a joy to see the cute Compsus weevils in the wild, even though sometimes it makes you feel like you missed out on a celebration or something.

 

Little Transformers: Eburia pedestris

We are back to celebrate little transformers: insects that are more than meets the eye. In this post I feature an insect whose transformation may seem a little awkward at first. It is not of cryptic nature, and it is not a case of mimicry.

While doing research about whip spiders in Belize, I also surveyed the insect biodiversity of one site, and so made sure to visit the light traps that we set up in several spots. The traps attracted an impressive diversity of insects, including moths, leafhoppers, ants, mantids, and katydids. One night a beautiful longhorn beetle (family Cerambycidae) showed up at the light trap. I did not recognize it at first so I collected it for a short Meet Your Neighbours session.

Longhorn beetle (Eburia pedestris) from Belize

Longhorn beetle (Eburia pedestris) from Belize

It was Eburia pedestris, a member in a genus of hardwood-boring longhorn beetles with a wide distribution in the Americas. I took a few decent shots. The beetle was trying to escape of course, so I reached out to grab it before it fell from the acrylic sheet. The moment I touched it something interesting happened. It crossed its legs and took a sitting position. I could not help it and I sneaked a loud laugh, because it looked like the beetle was in the middle of a yoga practice. It stayed in this comical position for a while, so I took some additional shots.

Longhorn beetle (Eburia pedestris) just sitting around

Longhorn beetle (Eburia pedestris) just sitting around

Another view of the strange pose taken by Eburia pedestris

Another view of the strange pose taken by Eburia pedestris

The strange position did not make a lot of sense to me, but I thought maybe it was a more elaborate way of playing dead, a common behavior in many beetle families (which will probably be featured more than once in this series). I finally decided not to wait for the cerambycid to “open up” so I grabbed it in my hand to put it back into the vial before releasing it outside. And then it hit me.

I mean, it literally hit me.
I felt my hand being pierced in several spots. Blood was dripping from my fingers.
You see, there is a reason why Eburia beetles take this unusual body posture. Look at the beetle’s leg joints and at the tips of the elytra. By taking a “sitting” pose, the beetle transforms into a prickly business, pointing sharp spikes in all directions, making it difficult for large predators like myself to handle the beetle. It will also not hesitate to use its other cold weapon: biting mandibles. Something I only noticed much later when I examined the photos – notice how the beetle contracts its abdomen, to make the elytral spines more prominent. Even with caution it was difficult not to get your skin punctured by the spines. They are as sharp as syringes. I would not want to imagine the experience for a mammal trying to eat this beetle. Ouch.

Longhorn beetle (Eburia pedestris) in defense posture. Grab it if you can.

Longhorn beetle (Eburia pedestris) in defense posture. Grab it if you can.

Some insects prove to us that avoiding predators is not all about hiding, mimicking other organisms, and advertising toxicity or potent venom. There are other, more creative ways to survive in the jungle out there. I will even take it a step further and say this Eburia beetle is comparable to the armadillo girdled lizard in its behavior. Nature is so awesome.

Little Transformers: Ceratocanthinae beetles

If you missed my subliminal message in the last two sentences of the previous post, I am not done yet with the Transformers. I was building up to this exact moment. You see, insecticons ARE everywhere. Maybe not in the same context as depicted on the TV series, but still there are creatures out there that are more than meets the eye. A substantial part of their existence relies on fooling predators into thinking they are something else: an inanimate object, another animal, or something completely different. I am happy to introduce “Little Transformers”, a new section on the blog, in which I will present interesting cases of insects in disguise.

We are launching this series with the beetle that started it all – the pill scarab (member of subfamily Ceratocanthinae). If you run an internet search with the words “transformer” and “insect”, there is a high chance that one of the results will be an image created by Kenji Nishida, showing a small beetle from Costa Rica transforming from a ball-mode to beetle-mode. The image has gone viral soon after being posted online, and now that Ceratocanthus beetle is fairly recognized by title as the beetle transformer. I have posted an image of a similar beetle before on this blog, a Ceratocanthus species I found in Belize. It was featured in an excellent phylogenetic paper about this subfamily by Alberto Ballerio and Vasily Grebennikov, and even made it to the journal’s cover. I recommend checking the paper out, even if you are not interested in these beetles, you can enjoy the beautiful images showing the impressive diversity of the group.

Pill scarab beetle (Ceratocanthus sp.) from Belize, showing the spherical alternative mode typical to members of Ceratocanthinae

Pill scarab beetle (Ceratocanthus sp.) from Belize, showing the spherical alternative mode typical to members of Ceratocanthinae

Ceratocanthinae are a subfamily of Hybosoridae within the Scarabaeoidea beetle group, containing over 360 described species, most of which are small in size (just a few millimeters in length). They have a wide distribution range mainly in tropical regions throughout the world, with only a few genera and species recorded close to temperate regions. Ceratocanthinae also occupy different types of habitats. The highest diversity seems to be in new world rainforests, but they also occur in temperate forests, subtropical forests, savannahs, and even in coastal deserts. Adult Ceratocanthinae are best known for their ability to conglobate: rolling into a nearly perfect ball. The elytra, pronotum, head, and all six tibiae interlock with each other by means of grooves and corresponding ridges, forming a tightly connected external surface. Many beetles take the form of a tight compact structure when threatened, however in Ceratocanthinae the tibiae of all six legs participate in forming the external hard surface of the sphere, unlike in other beetles.

Ceratocanthus sp. transformation sequence from ball-mode to beetle-mode

Ceratocanthus sp. transformation sequence from ball-mode to beetle-mode

It is fascinating to observe these beetles transform to and from their alternative mode. Nancy Miorelli, an entomologist and science communicator living in the Maquipucuna reserve in Ecuador, recently recorded a video showing the beetle opening up (by the way, Nancy also creates beautiful jewelry from insect wings and Tagua nut with the proceedings supporting rainforest conservation and the local community. You can check out her shop here).

Why do they do this? The ability to roll into a tight compact structure probably has anti-predatory and physiological advantages, such as moisture retention or thermoregulation. It seems that the primary use is as a form of crypsis, to avoid detection by nearby predators, however after following several beetles in the wild I noticed that they stay transformed into the ball-mode even when they are not active; perhaps it is a way for them to rest too.

Pill scarab beetle (Ceratocanthus sp.) from southern Belize. Full beetle-mode!

Pill scarab beetle (Ceratocanthus sp.) from southern Belize. Full beetle-mode!

Unfortunately, very little is known about the biology of Ceratocanthinae. They are sometimes found under bark, in tree holes, and in decomposing wood. Several records report adults and larvae that have been found in termite nests. However, It is unclear whether Ceratocanthinae are termitophilous and have a relationship with the termite hosts. The ability to roll into a ball can serve as a defense and might be an adaptation for living in the hostile environment of a termite nest. Another suggestion defines the beetles as termitariophilous, in other words attracted to the properties of the termite nest itself as opposed to its inhabitants. While the feeding habits of Ceratocanthinae are mostly unknown, a handful of observations report adults feeding on various fungi. It is therefore possible that Ceratocanthinae are attracted to some of the fungi growing on the surface of termite nests. This can explain the presence of the beetles in the nests, but unfortunately without additional data about the beetles’ life history it would be difficult to validate this connection.

So the next time you are out in the field and you stumble upon a tiny sphere in a peculiar place, take a closer look. If it looks like a beetle mummy, then bingo! You have a Little Transformer. Now all you need to do is wait for it to open up… Patience. Lots of patience.

From a blattodean to Nilio beetles

This is the story about how a small blattodean taught me something I did not know about beetles.

While photographing frogs in the Ecuadorian Amazon this past October, I noticed a tiny insect running across the surface of a fallen leaf resting on the forest floor. It had bright colors and looked interesting, so I collected it in hopes to photograph it later. When I finally got to do it, I was struck by its deception. You see, when I initially spotted it I thought it was a beetle. The dome-shaped body and the bright coloration resembled those of some leaf beetle species (family Chrysomelidae), and this insect even moved and walked like a beetle. Nevertheless, a close inspection revealed that its whole body was segmented. This was no beetle. It was a blattodean nymph.

Beetle-mimicking cockroach nymph

Beetle-mimicking cockroach nymph

Beetle-mimicking cockroach nymph. What could be the model species?

Beetle-mimicking cockroach nymph. What could be the model species?

Beetle-mimicking cockroach nymph

Beetle-mimicking cockroach nymph

Blattodeans exhibit some beautiful examples for mimicry, with some species resembling poisonous fireflies and venomous assassin bugs. It should come as no surprise that a blattodean might benefit from looking like a leaf beetle. While many leaf beetles are harmless, some species harbor chemical compounds that make them poisonous or distasteful to predators. Unfortunately, identifying a blattodean from its larval stage is very tricky and close to impossible. I was not able to locate anything that looked like the adult stage of this species. However, when I examined this cute blattodean I remembered that I have seen this color scheme on a leaf beetle before, and after digging in my old photo archive I was able to find the record.

Leaf beetle. Or is it?

Leaf beetle. Or is it?

I took this photo on one of my first visits to Ecuador, over a decade ago. I did not plan to do anything with the photo, but I thought it was a nice-looking leaf beetle and so I snapped a quick photo for my own records. Only I was completely off. This is not a leaf beetle.

Unlike most of its family members that are elongated and dull-colored, Nilio is a genus of darkling beetles (family Tenebrionidae) that bear a striking resemblance to leaf beetles and ladybugs. This resemblance can fool even experienced entomologists. Darkling beetles are well-known for their chemical defense, secreting odorous chemicals that will deter even the most enthusiastic field entomologist. This can explain the blattodean mimicry shown above.

This is not a leaf beetle but a darkling beetle (Nilio sp.)

This is not a leaf beetle but a darkling beetle (Nilio sp.)

After I realized these photos show a species of Nilio, I checked the rest of my photos from the very same trip, and started finding more photos of Nilio species.

Darkling beetle larvae (Nilio sp.) feeding on lichens

Darkling beetle larvae (Nilio sp.) feeding on lichens

Here is a group of larvae on a branch. Nilio larvae are gregarious (live in groups) and feed on epiphytic lichens. If you have ever seen the typical wire-worm larvae of darkling beetles you will understand why I labeled this photo as “chrysomelid larvae” in my archive.

Darkling beetles (Nilio sp.) aggregating next to pupation site

Darkling beetles (Nilio sp.) aggregating next to pupation site

In some species, not only the larvae, but also the adults, are gregarious. Here is a group of adults I found on a tree trunk close to their pupation spot. Like the larvae, these adults were feeding on lichens as well.

A closer look at the Nilio beetles aggregation

A closer look at the Nilio beetles aggregation

As you can see, not all Nilio species have bright coloration as the species shown above. However, even when they are closer to their “darkling roots” they still look more like to members of Chrysomelidae than Tenebrionidae. This all goes to show that even when you are confident about your knowledge of insect taxonomy or biodiversity, nature can still surprise you. I embrace these moments when I am caught unprepared; nothing like learning something new!

Two horned darkling beetle – Neomida bicornis

Last week I met with Catherine Scott and Sean McCann, two talented naturalists and spider-enthusiasts (Catherine studies the mating behavior of black widows, and if you haven’t already, I recommend following her live tweets from experiments). It was great to go hiking together in the snow-covered woods, looking for arthropods hidden inside fallen logs. Before we went on the hike, they brought me a few entomological presents, one of them were lovely beetles that they found during a trip a week earlier.

A pair of two-horned darkling beetles (Neomida bicornis). Ontario, Canada

A pair of two-horned darkling beetles (Neomida bicornis). Ontario, Canada

These magnificent beetles are Neomida bicornis, a species of fungus-feeding darkling beetles (family Tenebrionidae). They are tiny, measuring only a couple of millimeters in length. To the untrained eye they do not even look like darkling beetles, these beetles are like jewels! Their body is very shiny, metallic green in color. The elytra have a bluish tint. Populations of Neomida bicornis in southern North America have an orange pronotum (a true feast of colors, for a darkling beetle at least). The males are characterized by four horns, two of which prominent between the eyes, and two smaller ones on the clypeus (=lip area) above the mouth. The females have no horns. I admit, I have a soft spot for horned insects. What a fabulous gift, thanks again you guys!

These beetle are tiny! That’s the tip of a regular ruler with a millimeters scale.

The female two-horned darkling beetle (Neomida bicornis) is hornless

The female two-horned darkling beetle (Neomida bicornis) is hornless

This species is not rare, but its way of life makes it hard to find: the adults and larvae feed on bracket fungi (polypores) and burrow into this tough substrate, creating inner galleries. According to Sean, these beetles were active inside the mushroom despite the somewhat low ambient temperatures. From what I learned about eastern North American fungus-feeding tenebrionids, they have overlapping generations. In other words, both adult beetles and their larvae can overwinter inside the mushrooms. I will probably try to confirm this at some point but first I need to find out how the larvae look like. They are not the only arthropods taking advantage of a polypore-type shelter from the cold weather.

Male two-horned darkling beetle (Neomida bicornis) inside a polypore mushroom

Male two-horned darkling beetle (Neomida bicornis) inside a polypore mushroom

You cannot afford to buy this image

Several articles about Epomis that have been published over the last few months triggered an increase in public interest and the beetles’ popularity, followed by an avalanche of requests for image use from magazines and news agencies. I should be happy about this, if not for the small fact that most of these requests are for free or discounted images. I avoid mentioning anything about pricing for my photos here on the website. It is not that they are not for sale, on the contrary. My pricing is pretty standard for a wildlife photographer these days, and I even dare say it is competitive compared to stock agencies and other photographers’ rates. At this moment, I prefer to handle licensing requests on a case-to-case basis. I know that at some point, maybe when more people show interest, I will set up an e-commerce website offering prints.

That being said, I take the aspect of rarity into account when calculating my pricing. If my photograph shows a rare event, an unusual phenomenon or something other photographers are less likely to capture, I charge a higher rate. I admit that as of now I only have a handful of such photos, and as you might expect, some photos of Epomis beetles fall under this category. Case in point:

European green toad (Pseudepidalea viridis) being lured to hunt and getting attacked by a larva of Epomis dejeani. Several news agencies, while completely ignoring my pricing, requested to license this photo for what I can only call - pennies.

European green toad (Pseudepidalea viridis) being lured to hunt and getting attacked by a larva of Epomis dejeani. Several news agencies, while completely ignoring my pricing, requested to license this photo for what I can only call – pennies.

Why do I rate these photos differently from the rest of my portfolio? Wouldn’t it be wiser to charge the same rate for each image? Pricing photographs is a bit of a controversial topic. While I will not go into pricing standards, many pro photographers agree that there is nothing more insulting than receiving requests from commercial entities for free images. Some of us already have our photos spreading through the internet after being stolen (Click here for an example. Unfortunately for me I was too late to stop this one from spreading). On the other end of the spectrum there are photographers who are happy to give photos away for a simple credit mention. I try not to judge, but I honestly cannot understand this approach. There is a lot involved financially when one decides to pursue professional photography. I love this analysis by John Mueller:

“It cost me $6,612 to take this photo.
$12 in gas to go from work to this spot and then home. The camera I took this with cost $2500. The lens was another $1600. The Singh Ray Reverse Neutral Density filter was $210. The Lee Wide-Angle Adapter and Foundation kit was another $200. The Slik Tripod was another $130. The shutter-release was another $60. When I got home, I uploaded it to a computer that cost me $1200, and then I used Lightroom 3 which I got for $200. I then exported it and tinkered with it in Photoshop which costs about $500.”

OK, maybe this is a little too extreme. If I took this approach to calculate the rate for my Epomis photo, including gear and traveling costs (this photo was taken in Israel after my relocation to Canada, so there was quite a bit of traveling involved) it would easily reach over $10K. Instead, let’s keep it simple, and I will include just one aspect that is frequently missed when reviewing photographs – time.

To most people, a photo is merely a click of a button. A perfect moment captured in time. However, I hold a slightly different opinion, which I expressed briefly in this post. You see, it took me two years to take the above photo. And I am saying this while omitting the +5 years I have been studying Epomis beetles, which gave me excellent insights on where and when to find them in the field. Knowing your subject is the key to getting good shots in the wildlife photography genre, yet it still took me another two years to get the shot. Why? This is where photographic technique comes into play. I planned this shot in my mind way before I traveled back to Israel to search for my subjects. I had to know exactly where to position and how to diffuse my lights, which moment to press the shutter, and for months I perfected my technique so that when I get to that decisive moment, in which I have only a split second to record the predation interaction, it would go as smooth as possible. And you know what? Even after all this planning it still took a few attempts to get the sequence the way I wanted it.

To summarize this rant, my hard-earned knowledge and level of expertise are not up for grabs. Definitely not at a discounted rate. Oh yes, this particular photo also consists of four different exposures. Maybe I should have mentioned this as well.


UPDATE (11 Mar, 2016): In the last 24 hours this post received a lot of attention, sparking an interesting discussion on FaceBook. After reading some of the comments, I want to clarify a few things:

* The pricing calculation that appears in quotes is NOT my pricing. I only brought it as an example to show the level of financial investment for the professional photographer. If you read on, you learn that I am more realistic and do not price my photos this way.

* I know I made it sound like I never allow to use my photos free of charge but I assure you this is not the case. For most personal use, in-class educational use and scientific presentations I do not charge a fee. Other non-profit use is evaluated on a case-to-case basis, but I am very flexible in my terms. If I supply high quality photos I expect to receive something equal in return, it does not have to be currency; in the past I received books, gift cards, bits of gear, accommodation and even research support in exchange for my photos.

* Also, it is OK if you do not agree with my opinion. If you want to give your photos away for free, go ahead. I do not like it because it causes depreciation of other photographers’ work, but I cannot stop you. However, if one day you choose to start viewing your creations as valuable and decide to charge a fee for their use, making that transition from charging nothing will be hard for you, take it from someone who has been in that stage.

Bombardier beetles – explosions of smoke in your face

I was very positively surprised by the response to my previous blogpost about Epomis. In fact, it now seems that this post is the most popular one on the blog, even more than the ones about the botfly and my NZ accident. How do I top it? Only time will tell. In the meantime, I wanted to mention some of the other ground beetles (family Carabidae) that share the habitat with Epomis. You see, when you start flipping stones and pieces of wood scattered around rain-pools you encounter many carabids. But one group really stands out in appearance, and, as much as it is hard to believe, in sound: the bombardier beetles.

Bombadier Beetle (Brachinus crepitans), one of the cutest species of ground beetles. Golan Heights, Israel

Bombadier Beetle (Brachinus crepitans), one of the cutest species of ground beetles. Golan Heights, Israel

An aggregation of several beetle species found under a rock. Bombardier beetles (Brachinus alexandri) can be seen on the right. Also appearing in this photo: Chlaenius aeneocephalus (Carabidae, metallic colors), and Cossyphus rugulosus (Tenebrionidae) - beautiful beetles camouflaged as seeds! Central Coastal Plain, Israel

An aggregation of several beetle species found under a rock. Bombardier beetles (Brachinus alexandri) can be seen on the right. Also appearing in this photo: Chlaenius aeneocephalus (Carabidae, metallic colors), and Cossyphus rugulosus (Tenebrionidae) – beautiful beetles camouflaged as seeds! Central Coastal Plain, Israel

Bombardier beetles is a large group comprised of several Carabidae tribes. Here I refer mainly to species of the genus Brachinus. These are small to medium sized beetles, usually with striking aposematic coloration: the body and limbs are bright orange, while the elytra (wing covers) are usually dark green or brown, sometimes with a metallic sheen. These colors serve as a reminder for potential enemies that these beetles can deploy a powerful weapon: an explosion of hot chemicals, which can be aimed at almost any direction.

Two common species of bombardier beetles from Israel: left - Brachinus alexandri; right - Brachinus berytensis

Two common species of bombardier beetles from Israel: left – Brachinus alexandri; right – Brachinus berytensis

Much has been written about the mechanics and evolution of the beetles’ chemical defense. In short, when provoked the beetle releases two chemicals, hydroquinone and hydrogen peroxide, into a chamber in its abdomen. This mixture, when comes in contact with a catalyst, turns highly combustible due to the oxidation of hydroquinone and the breakdown of hydrogen peroxide to oxygen and water. The chemical reaction starts inside the chamber with temperatures reaching 100°C, and the high-pressure buildup causes the explosion. Then all the beetle has to do is to aim its “nozzle” and fire! The result is a smoke cloud of chemicals at extremely high temperatures. It can momentarily paralyze or even kill arthropod enemies, such as ants and spiders. To us humans (=entomologists who collect the beetles with bare hands) the damage it causes is not so severe, usually nothing but a small stain of burnt tissue, but the effect is coupled with a startling popping sound, and that might be enough for the beetle to escape from a large predator. This complex defense mechanism was used by creationists as an example for intelligent design in debates against evolution. However, it can be easily demonstrated that by gradually increasing the concentration of hydrogen peroxide this defense could evolve in incremental steps without risking the beetles’ existence. If you are still confused, I highly recommend watching Richard Dawkins explaining it here.

Damage to skin caused by bombardier beetle (Brachinus berytensis) chemical defense

Damage to skin caused by bombardier beetle’s (Brachinus berytensis) chemical defense. Not much.

I feel that I must stop here for a brief public service announcement: There are several videos showing the beetle’s defense (you can google them), almost all of them depict the beetle being held in place with either glue or a pair of tweezers. I would like to argue that unless this is being done for research purposes, these actions border on animal cruelty. Sure, it is strange to hear such a statement coming from someone who fed live amphibians to beetles. Still, I want to stress that in the case of the bombardier beetles this is highly unnecessary. The beetles will still put up the same “show” if poked or gently lifted, without causing them much stress and damage, as can be seen from this short video I took almost a decade ago (I mean it, this is a really old video, so please do not judge the quality):

The species shown in the video is Brachinus bayardi, one of the largest species found in Israel:

Bombardier beetle (Brachinus bayardi), Central Coastal Plain, Israel. These beetles are strictly nocturnal, and can be found running on muddy banks of rain-pools in search of prey.

Bombardier beetle (Brachinus bayardi), Central Coastal Plain, Israel. These beetles are strictly nocturnal, and can be found running on muddy banks of rain-pools in search of prey.

While the chemical defense of the bombardier beetle alone is interesting enough, there is another aspect in their life history that is fascinating. In most species, the adult bombardier beetles are predators of small, soft-bodied invertebrates, but as larvae they feed solely on pupae of other beetles found in the same humid habitat, usually diving beetles (family Dytiscidae) and water scavenger beetles (family Hydrophilidae). This makes them parasitoid insects – their larvae are completely dependent on another insect for completion of their development, usually with fatal consequences to the host. While most parasitoid insects are wasps and flies, in beetles this way of life is relatively uncommon, with only a handful of beetle families exhibiting a parasitoid life history. Despite searching for years, I have yet to find larvae of bombardier beetles, and my attempts to obtain larvae from captive adults has failed so far. I hope this will change one day.

Epomis beetles – insect response to amphibian tyranny

You can say that I am a little obsessed with Epomis beetles. Can you blame me? They are fascinating creatures. It suddenly dawned on me that since the launch of this blog I have not written a single word about the beetles. Unfortunately, there is a lot of misinformation and inaccuracies on the internet, and even in reputable magazines and books featuring Epomis.

It is one of the weirdest animal stories, one in which a small and seemingly harmless animal prevails against a much bigger animal. A unique case of predator-prey role reversal, where the would-be predator becomes the prey. Amphibians, such as frogs, typically prey on insects including ground beetles and their larvae. Among these beetles, one genus managed to stand out and deliver a proper counterattack to its predators. The Epomis larva has impressive double-hooked mandibles that look like they came right out of a horror movie. It waves them around along with its antennae until the movement attracts a hungry amphibian, which approaches quickly and tries to eat the larva. In a surprising turn of events, the larva is able to dodge the predator’s attack only to leap on the unsuspecting amphibian and sink its jaws into its flesh. It then continues to feed on the amphibian, sucking its body fluids like a leech at the initial stage, and eventually consuming it completely. Sounds like science fiction, I know. But it is real. Furthermore, these larvae feed exclusively on amphibians, and refuse to eat anything else. They are dependent on amphibian prey for completion of their development. This makes the predator-prey role reversal an obligatory one, which is very rare in the natural world.

First instar larva of Epomis circumscriptus showing its double-hooked mandibles.

First instar larva of Epomis circumscriptus showing its double-hooked mandibles.

I first learned about Epomis beetles in 2005, when I was working in the Natural History Collections at Tel Aviv University in Israel. They ended up being a great topic for my M.Sc thesis research, and I continue to study them to this day. The genus contains about 30 species distributed in the old world, with the African continent as the center of diversity. They inhabit the banks of rain-pools and temporary ponds, and synchronize their breeding season with amphibians’ metamorphosis into the terrestrial stage. Most of what we know about Epomis comes from studying three species only (in other words, there is more unknown than known). When the main paper from my thesis was published in late 2011, it became an instant hit in the media (see below). However, one main point of criticism was that the supplementary videos showed the interactions between Epomis and amphibians in a lab setting, which might have triggered an unnatural behavior from both. This is a valid point. We needed a controlled environment to test and prove beyond disbelief several hypotheses regarding the feeding habits of Epomis. Nevertheless, I spent the following years going back and recording the same interactions in the field.

Here is a larva of Epomis circumscriptus displaying luring behavior while waiting for a passing amphibian:

And this is the outcome of the above scenario:

 

To better understand what is happening during this swift encounter, here is a break down of this interaction to several simple steps. As you can tell by the above video, this sequence takes only a split second in real-time:

From enticement to desperation: European green toad (Pseudepidalea viridis) being lured to hunt and getting attacked by a larva of Epomis dejeani. View large!

From enticement to desperation: European green toad (Pseudepidalea viridis) being lured to hunt and getting attacked by a larva of Epomis dejeani. View large!

The larvae are terribly good at this. Even if they are caught by the amphibian’s tongue, they are still able to quickly use their mandibles to grab the amphibian from the inside, whether it is the throat or stomach, and start feeding.

Hard to believe, but this toad is being eaten.

Hard to believe, but this toad is being eaten.

Sometimes the amphibian accidentally steps on the Epomis larva. In this case, the larva will attach to the leg. First instar larva of Epomis dejeani feeding on a Lemon-yellow tree frog (Hyla savignyi).

Sometimes the amphibian accidentally steps on the Epomis larva. In this case, the larva will attach to the leg. First instar larva of Epomis dejeani feeding on a Lemon-yellow tree frog (Hyla savignyi).

While the larvae are specialized amphibian ambushers, the adult Epomis beetles are somewhat more generalist predators. They prey on other arthropods and will sometimes go for the occasional earthworm. But these feeding habits only last until they stumble upon an amphibian again. Then, a hidden memory back from the days they spent as larvae kicks in, and they set out to relive their glory days as amphibian slashers.

Epomis dejeani attacking a European green toad (Pseudepidalea viridis) while holding firmly to avoid falling off. Compare to the photo of the larva attached to the leg above.

Epomis dejeani attacking a European green toad (Pseudepidalea viridis) while holding firmly to avoid falling off. Compare to the photo of the larva attached to the leg above.

In a blink of an eye, the beetle sneaks up on the amphibian and pounces on it, holding firmly to avoid falling off. It then moves to the back, and like scissors uses its mandibles to make a horizontal incision, which disables the hind legs and ultimately prevents the amphibian from escaping. As if this was not gory enough, both adult beetles and larvae are particularly fond of eating the amphibian’s eyes. It is like a sick twist of revenge for the insects: after millions of years of suffering under the constant threat of predation by amphibians, they are able to fight back. Not only they hunt their potential predators and slowly eat them alive, but they also cripple them and peck their eyes out right from the start.

Remains of a partially eaten amphibian in the vicinity of temporary ponds are usually a good sign for adult Epomis activity in the area. Central Coastal Plain, Israel

Remains of a partially eaten amphibian in the vicinity of temporary ponds are usually a good sign for adult Epomis activity in the area. Central Coastal Plain, Israel

Epomis dejeani guarding a recently captured European green toad (Pseudepidalea viridis). The beetles can get very territorial over prey items.

Epomis dejeani guarding a recently captured European green toad (Pseudepidalea viridis). The beetles can get very territorial over prey items.

How did this phenomenon evolve? To be honest, we do not know exactly. But it is possible that somewhere in the evolutionary past, Epomis beetles used counterattack behavior, instead of escaping, as a defense against amphibians. Such behavior could have later evolved into exploiting amphibians as a source of food. The amphibians probably could have not evolved to recognize and avoid this behavior because the majority of insect prey they encounter poses no threat to them, as opposed to the relatively uncommon Epomis beetles. Another interesting point, is that both adults and larvae of Epomis lack any venom, yet the amphibian is quickly subdued and stops resisting after being caught, even while it is slowly being devoured alive.

One common reaction that I get in response to this study is that it was “cruel”, involving poor helpless amphibians that were sacrificed in the name of science. Some people even go further to suggest that I am a sadistic scientist somehow enjoying this. It could not be farther from the truth: This is a natural phenomenon and Epomis beetles must kill and consume amphibians in order to exist. Nature is cruel. We tend to think of amphibians as cute and helpless animals, but from the insects’ perspective they are actually cold-blooded killers (pun intended), gulping every small creature in their path. Moreover, the reality of this study is even harsher: the amphibians would have still died even without me using them as food for Epomis, because the puddles they were found in as tadpoles were quickly drying out. As for myself, I cannot begin to describe the emotional stress I suffered during this research, just so I could bring Epomis’ fascinating biology to the spotlight. I love amphibians, and it was disheartening for me to watch them die so many times. Throughout the study I kept telling myself: “I am going to hell for this, no doubt about it”.

In the past few years I have been following the response to the story of Epomis beetles. More sightings of the beetles are being reported from around the world. There are some excellent blog posts (1,2,3,4, and do not miss Bogleech!), news reports (1,2,3,4,5), videos and TV segments, radio interviews and podcasts, and even Wikipedia pages. Epomis has found its way into artwork. There is a metal band named after the beetles. It is very possible that this is the discovery I will go down in history for, and that is fine by me. Hollywood, I am waiting by the phone for your call. To end this post on a positive note, here is a fitting limerick that I love, written by the talented Celia Warren:

Of the genus Epomis, folk say,
Their larvae at first seem like prey,
But they’ll bite a frog’s throat,
Leave it paralyzed, note!
Then they’ll eat it without more delay.

Meet Your Neighbours

I recently joined as a contributor to Meet Your Neighbours – a global photography project that sets out to connect communities with their local flora and fauna, and promotes nature conservation. The idea is to record all possible biodiversity against a clean white background using a simple field studio. By stripping the subjects off their natural surroundings they become the center of attention, provoking more interest. Another benefit from photographing against a white background using a standard protocol is that all subjects from different parts of the globe get the same level of appreciation, regardless of their location or taxonomic group. This can reveal interesting patterns: when comparing subjects from different origins it is difficult to say which is more exotic. In other cases, subjects that are physically very distant from each other share many similarities in appearance.

Ocellated Skink (Chalcides ocellatus) modeling for me on the white backdrop

Ocellated Skink (Chalcides ocellatus) modeling for me on the white backdrop

 

Checkered beetle (Trichodes affinis) is very common on Asteraceae inflorescence during the Israeli spring

Checkered beetle (Trichodes affinis) is very common on Asteraceae inflorescence during the Israeli spring

 

I discovered Meet Your Neighbours in 2010 and was immediately hooked. I liked this style of photography, which reminded me of old natural history books featuring illustrations of plants and arthropods. At that time I was already trying to achieve similar results in my photography, only I was using white paper as background so the effect was a bit different. For this reason I was delighted and honored when Clay Bolt, one of MYN founders, contacted me in 2013 with the offer to join the project. For me this meant one main goal – presenting species from Israel, even though I am based in Canada and travel quite extensively to other countries.

Mediterranean House Gecko (Hemidactylus turcicus)

Mediterranean House Gecko (Hemidactylus turcicus)

 

Darkling beetle (Erodius gibbus). This is perhaps the most easily recognized beetle in Israel (after the overrated ladybug). Its small size, oval shape, and matte back color are unmistakable. This species also has a wide distribution range in sand dunes along the Israeli coast, and it can be found in the desert as well.

Darkling beetle (Erodius gibbus). This is perhaps the most easily recognized beetle in Israel (after the overrated ladybug). Its small size, oval shape, and matte back color are unmistakable. This species also has a wide distribution range in sand dunes along the Israeli coast, and it can be found in the desert as well.

 

Israel is located at the bridge of three continents – Europe, Asia and Africa. Due to its geological history and a variety of ecological conditions, Israel is characterized by a climate gradient from north to south, and to some extent from west to east. This creates many habitat types throughout the country, which are home to an impressive diversity of animals and plants. Most species in Israel are typical to the Mediterranean region, but desert species can be found in south of the country, whereas species from colder origins like Europe and Asia are found in northern Israel. For the latter Israel is the southernmost point in their distribution. Some species of tropical origin can also be found in the oases along the Great Rift Valley.

I decided to start my contribution to MYN from the very base, the creatures I know well from the places I explored as a kid.

The semi-stabilized sand dunes of Israel are home to the beautiful ground beetle Graphipterus. A recent study revealed that instead of the single species G. serrator, there are actually three similarly-looking Graphipterus species in Israel, each with its own distribution. This beetle, from the Central Coastal Plain, seems to be a new species to science and is currently being described.

The semi-stabilized sand dunes of Israel are home to the beautiful ground beetle Graphipterus. A recent study revealed that instead of the single species G. serrator, there are actually three similarly-looking Graphipterus species in Israel, each with its own distribution. This beetle, from the Central Coastal Plain, seems to be a new species to science and is currently being described.

 

I grew up in a city in the Central Coastal Plain of Israel. I had the fortune of spending my childhood with a lot of nature around me. Wildflower fields, Citrus orchards, temporary ponds and sand dunes were at walking distance from my house. Every weekend I would go out in the morning and get lost somewhere in the wilderness, looking for interesting animals. And there was much to be discovered: tame snakes, skinks, beautiful insects like beetles and mantises, frogs and spiders. I used to rear butterflies in my room because I was fascinated with the transformation from a caterpillar to the adult butterfly. I am still fascinated by this metamorphosis even today, although I focus on other insect groups.

This spring, I took a short research trip to Israel, and used this opportunity to document some of my favorite animals. I hope that through these photographs people can learn more about the diversity of the country and maybe in time will even consider visiting!

Isophya savignyi, a common flightless katydid from Israel. Top - male; bottom - female

Isophya savignyi, a common flightless katydid from Israel. Top – male; bottom – female

 

Mediterranean banded centipede (Scolopendra cingulata), one of the most commonly encountered arthropods under stones in the Central Coastal Plain during the spring season

Mediterranean banded centipede (Scolopendra cingulata), one of the most commonly encountered arthropods under stones in the Central Coastal Plain during the spring season

 

Compsobuthus schmiedeknechti, one of the smallest scorpion species in Israel. This adult female is only 3cm long, including the tail!

Compsobuthus schmiedeknechti, one of the smallest scorpion species in Israel. This adult female is only 3cm long, including the tail!

 

I was very fortunate to meet one of the most charming reptiles in Israel: the Mediterranean Chameleon (Chamaeleo chamaeleon rectricrista). Every encounter with a chameleon is always a splash of spectacular coloration and behavior. This individual was very cooperative and returned to its perch after the photo shoot.

I was very fortunate to meet one of the most charming reptiles in Israel: the Mediterranean Chameleon (Chamaeleo chamaeleon rectricrista). Every encounter with a chameleon is always a splash of spectacular coloration and behavior. This individual was very cooperative and returned to its perch after the photo shoot.

 

BugShot Belize: Treat yourself to something good

I have been meaning to write about BugShot Belize straight after my return, while I was still excited about it, but upcoming deadlines and a small entomological ordeal took most of the attention.
But don’t get me wrong – whenever I think about this trip to Belize I get a huge grin on my face. It was THAT good.

If you have some interest in macrophotography, you probably heard about the BugShot workshop series – a get-together of photography and arthropods enthusiasts, over the course of several days, led by some of the best macrophotographers out there.
The notice about an upcoming workshop in Belize caught me while I was conducting my research fieldwork in New Zealand. I was thrilled to hear there would be four instructors instead of three: Alex Wild, Thomas Shahan, John Abbott, and, joining them for the first time, Piotr Naskrecki. I knew I had to secure my place in that workshop.

By the way, do not mistake this for an in-depth review of BugShot. This post is not going to be a list of what we did during the workshop. If you search online, you will find several such reports. I believe that if you consider going to one of these workshops, you should stop reading about them online and start working on getting there yourself. I will, however, highlight a few things that made the whole experience worthwhile for me.

I came to BugShot Belize with three main goals: to improve in taking photos in high magnification, to learn more about wide-angle photography, and to hear about high-speed photography.

Leafcutter ants (Atta cephalotes) carrying a leaf as food source for mushrooms cultivated inside their nest. These ants almost never stand still, and require some concentration to photograph. In addition, some backlighting helps to make the leaf "pop out".

Leafcutter ants (Atta cephalotes) carrying a leaf as food source for mushrooms cultivated inside their nest. These ants almost never stand still, and require some concentration to photograph. In addition, some backlighting helps to make the leaf “pop out”.

 

We stayed at Caves Branch, a beautiful Lodge set in the middle of the Belizean jungle. The owner attended one of the earlier BugShots, so we were lucky to have the best host one can ask for. Although being acquainted with only one other person before the workshop, I immediately felt connected to everyone else.

One of the questions I was repeatedly asked during the workshop was “is any of this new to you?”, and I have to say I found it a bit odd at first. I am not known as a photographer and at that time I had only a handful of photos uploaded to this website. But then it hit me – I do have some experience in photography (I started the photography hobby when I was 14, so I must have learned a thing or two since then), and I do have background in Entomology. Nevertheless many things were new to me – every person brings his own approach to photography and for being out in nature. It was interesting to listen to both the instructors and the people attending the workshop. In fact, here I feel I need to apologize before my fellow BugShotees (and anyone else I might meet in the future) – Most of the time I am quiet and I do not strike as being a very talkative person. But once I “break-in” I do not cease talking, and unfortunately I can get a little annoying then. So I apologize if I never interacted with some of the people, or was simply impossible to shut up when talking with others.

We had a small light trap to attract flying insects at night, which proved quite promising in the first night when we had no clue what to expect. One of the moths that arrived was so adorable that it led to a collaborative post with Nash Turely, who recorded a hilarious video of the moth settling into its resting pose.

Periphoba arcaei (Hemileucinae) aka bunny moth. Cute furry legs!

Periphoba arcaei (Hemileucinae) aka bunny moth. Cute furry legs!

 

Periphoba arcaei (Hemileucinae) employs a defense posture when camouflage fails, revealing aposematic colors to scare off predators.

Periphoba arcaei (Hemileucinae) employs a defense posture when camouflage fails, revealing aposematic colors to scare off predators.

 

But the main highlight for me was not waiting for the insects to come, but being able to go on night walks in a tropical jungle and actively search for whatever I could find. Man, how I missed doing this! If you like nature but have never done it, I highly recommend! Just be aware of all the possible dangers lying ahead and care for you own safety. And DO NOT do this alone, especially at night (speaking from personal experience, you can easily get lost).

A juvenile whipspider (possibly Phrynus parvulus) feeding on a caterpillar, found during a night walk.

A juvenile whipspider (possibly Phrynus parvulus) feeding on a caterpillar, found during a night walk.

 

Let’s get back to my goals though. Unfortunately, I did not give myself too many opportunities to photograph in high magnification. There were so many things to see and photograph in the jungle, that very often I found myself making the mistake of sticking with one lens throughout most of the day just for the sake of not missing a subject. In addition, the intense humidity made it very annoying to switch lenses because they would fog up very quickly.

Portrait of an assassin bug (Reduviidae) in the rain

Portrait of an assassin bug (Reduviidae) in the rain

 

Scales on hindwing of an owl butterfly (Caligo sp.) - it reminded me of a tiger!

Scales on hindwing of an owl butterfly (Caligo sp.) – it reminded me of a tiger!

 

One of the techniques I was eager to know more about was wide-angle macrophotography, and you can image my excitement when I realized I could learn it from one of the best. Good thing I was not lazy and decided to bring my tripod.

Piotr Naskrecki explaining about wide-angle macrophotography

Piotr Naskrecki explaining about wide-angle macrophotography

 

This was my first attempt to shoot wide-angle macro in BugShot:

Female canopy katydid (Tettigoniidae) resting on a Heliconia leaf

Female canopy katydid (Tettigoniidae) resting on a Heliconia leaf

 

It is OK, but could be better. Apparently I was doing a few things incorrectly, which led to a poor composition and lighting in the photos.
And below is the photograph I took while learning from the master, Piotr Naskrecki. Some people might actually prefer the previous photo. I like this one much better.

Leaf-mimicking katydid (Mimetica sp.)

Leaf-mimicking katydid (Mimetica sp.)

 

Of course, in these techniques, practice makes perfect. There is still plenty of room to improve. But I am slowly getting there.

Apart from some interesting arachnids that we found, the best find in my opinion was a tiny scarab beetle (Ceratocanthinae, identified as Ceratocanthus sp. by Dr. Alberto Ballerio) that can roll into a ball. Unfortunately, I did not take a photo while the beetle was open and moving about. If anything, this is a good reason to go back to Belize, I think this animal is incredible. I have known rolling isopods, pill millipedes, pill roaches, even some flies and wasps evolved to roll up into the shape of a sphere for protection from enemies, but this animal was something that was completely new to me. This beetle is so tightly packed when rolled-up, every leg is inserted into a dedicated slot, that it almost looks like a transformer.

Pill scarab beetle (Ceratocanthus sp.)

Pill scarab beetle (Ceratocanthus sp.)

 

But my all-time favorite photo from the workshop was not of an insect (well, not entirely). One of the people who attended the workshop was Roy Dunn, an acclaimed photographer specializing in high-speed photography (and an avid arachnophile). I enjoyed listening to his and John Abbott’s comments about this technique, and we were lucky to have the opportunity to get a hand-on experience with it. While I was impressed with Cognisys demonstration, I was more interested in controlling the light using few accessories as possible while taking high-speed photos. When we visited a nearby butterfly farm we could not take our eyes off the stunning hummingbirds coming to feed on sugar water. Many people tried to photograph them from up close using a flash (to whom Roy remarked: “That’s not how you do it!”). Although macro shots of hummingbirds can be amazing, the flash created a harsh light. So I tried to photograph in ambient light using my telephoto lens (Canon 500mm) with no flash, playing with the settings in the camera. Carefully framing to get the light reflected behind the birds, I ended up with some impressive shots, one of them is clearly my favorite of all my BugShot portfolio. Actually, I consider it to be my best photo from 2013. And it even has an insect in it.

Rufous-tailed Hummingbirds (Amazilia tzacatl) and a paper wasp passing by

Rufous-tailed Hummingbirds (Amazilia tzacatl) and a paper wasp passing by

 

So my tip to you: if you have any interest in small creatures (they do not have to be insects!), and you like to photograph, go to one of these workshops. It does not matter if you are an amateur or a professional. Even if you think you have enough photography experience I still recommend attending – just being around people who share similar interests might spark you to try something new. There is already a new BugShot Belize workshop planned with similar content and instructors. If you read this far, you probably want to be there.