Archives

Vestria – the katydid that wanted to be a spider

Last week my home country celebrated the holiday of Purim; a holiday of joy, in which people go out to the streets, pretend to be something else by wearing masks and costumes, and exchange gifts. It is kind of like a happy mishmash of Halloween and Saint Patrick’s Day. And what excellent time it is to highlight interesting cases in nature in which one organism pretends to be another. One such story involves a genus of beautiful katydids – Vestria.

Rainbow katydid (Vestria sp.). It is hard to describe how colorful these katydids are. This photo does not do justice to the insect's beauty.

Rainbow katydid (Vestria sp.). It is hard to describe how colorful these katydids are. This photo does not do justice to the insect’s beauty.

When searching for arthropods in the rainforest I made a habit of backlighting leaves with a flashlight to see if there are animals hiding on the side opposite to me. There is always something interesting to find: salamanders, caterpillars, insects infected with parasitic fungi, and even velvet worms. Very often spiders occupy the underside of a leaf by day, waiting for nighttime to resume hunting on the top of the leaf’s surface. Among the most frequently encountered ones are huntsman spiders (family Sparassidae) of the genus Anaptomecus. These are flat, thin-limbed spiders, usually pale green in color to blend in with the leaf they are sitting on, but with a brightly colored abdomen with red and yellow patches. They are extremely fast, and when disturbed they shoot and vanish on the underside of a neighboring leaf.

Huntsman spider (Anaptomecus sp.). Amazon Basin, Ecuador

Huntsman spider (Anaptomecus sp.). Amazon Basin, Ecuador

Huntsman spider (Anaptomecus sp.) hiding under a leaf

Huntsman spider (Anaptomecus sp.) hiding under a leaf

To my surprise, in some of these searches upon shining my light I thought I found a spider at first, but when I turned the leaf I saw a katydid nymph.

Katydid nymph hiding under a leaf. Like Anaptomecus spiders, they too seem to prefer sitting on palm leaves.

Katydid nymph hiding under a leaf. Like Anaptomecus spiders, they too seem to prefer sitting on palm leaves.

With the kind assistance of Piotr Naskrecki I learned that these are nymphs of Vestria katydids, known mostly due to their characteristics as adults (more on that later). Genus Vestria contains four species known from lowland forests of Central and South America, but do not let this low number fool you. There are many more species in need of a formal description, and others awaiting their discovery. In fact, to the best of my knowledge, all the species featured in this blog post are undescribed.

Rainbow katydid nymph (Vestria sp.) camouflaged on a leaf. Amazon Basin, Ecuador

Rainbow katydid nymph (Vestria sp.) camouflaged on a leaf. Amazon Basin, Ecuador

The young Vestria nymphs bear an uncanny resemblance to Anaptomecus spiders. They too are flat, green with similar leg patterns, and have a bright yellow-red abdomen. Their mimicry to the huntsman spiders does not end there: they also share the same behavior of pressing flat against the underside of a leaf when resting, and running to the next leaf when disturbed. And, as I learned the hard way, they can bite. Like most members of tribe Copiphorini, Vestria katydids are packed with powerful jaws, and they will not hesitate to use them when in danger. By the way, these katydids are omnivores, feeding on both animal and plant matter, but they show a strong preference towards live prey, kind of like… well, spiders.

Rainbow katydid (Vestria sp.) feeding on a beetle pupa. When given a chance they will always prefer a protetin-based diet.

Rainbow katydid (Vestria sp.) feeding on a beetle pupa. When given a chance they will always prefer a protetin-based diet.

As adults, the Vestria katydids take a different look completely. They are no longer flat and look like the huntsman spiders. In this stage they are known as rainbow katydids or crayola katydids because of their striking coloration, which is an advertisement of their chemical defense against predators.

A selection of rainbow katydids (Vestria spp.) from the Amazon Basin of Ecuador

A selection of rainbow katydids (Vestria spp.) from the Amazon Basin of Ecuador

When provoked, Vestria katydids curl their body and hunker down, revealing a brightly colored abdomen. They also expose a scent gland from their last abdominal tergum and release a foul odor that is easily detectable from a close distance. Different species of Vestria have different odors, and from my personal experience I can attest that some species smell as bitter as bad almonds while others smell like a ripe peaches. The compounds released are pyrazines, and there is evidence that this chemical defense is effective against mammalian predators such as monkeys. While many katydids have bright aposematic coloration, Vestria species are one of the only examples of katydids successfully deploying chemical defense against predators, making them distasteful. But don’t listen to me, I actually like peaches.

Rainbow katydid (Vestria sp.) displaying defense behavior.

Rainbow katydid (Vestria sp.) displaying defense behavior.

But let’s go back to the spider-mimicking katydid nymphs. As it is often the case in nature, mimicry is not always straightforward. Why would a katydid nymph adopt the look and behavior of a spider? Avoiding predators may be the answer that comes in mind, however it is not that simple to explain. Although the model spiders are venomous, they are easily preyed upon by the predators they share with the katydids – birds, frogs and lizards. So what other benefits come into play here? And is it really a case of mimicry? It is a difficult question to answer, as there are several possible explanations for mimicry in this is a case. To put it into context, on one hand it can be an example of Batesian mimicry, in which one harmless organism adopts the appearance of another that is widely-recognized by predators as toxic, vemonous, or unpalatable, to gain an advantage when confronted with a predator. In other words, the katydids use their mimicry to signal visual predators (such as spiders, mantids) to avoid confrontation with a spider (I discussed a similar case here). On the other hand, it might be a case of Müllerian mimicry, two unpalatable organisms evolve to look similar in appearance, to send the same message to predators and enemies. It is possible that both the Vestria nymph and the spider are signaling that they are fast-moving and can deliver an unpleasant bite when provoked. In addition, both have some sort of chemical defense: the spider is venomous, while the katydid is distasteful. There is also a third option – that this is all coincidental, and it is a case of convergent evolution: the two organisms simply try their best to hide from predators and came up with a similar adaptation to solve a similar problem, without mimicry. Piotr suggested that this is simply a crypsis (camouflage) adaptation for the two organisms. The yellow-red spots can represent leaf damage that is commonly seen on leaves in the rainforest. It just goes to show that in nature things are not always easy to explain, because sometimes they do not fall neatly into our boxes of labeled natural phenomena. What do you think?

Vestria nymphs have beautiful markings on their body, which can assist in breaking the outline of the insect to avoid detection by predators.

Vestria nymphs have beautiful markings on their body, which can assist in breaking the outline of the insect to avoid detection by predators.

In some species the dark markings remain also in the adult stage.

In some species the dark markings remain also in the adult stage.

Smile! You're on katydid camera!

Smile! You’re on katydid camera!

UPDATE (14 May, 2017): Paul Bertner photographed this amazing butterfly pupa in the Chocó rainforest of Ecuador. It bears an unbeatable resemblance to the Vestria katydid nymph!

Riodinid pupa (Brachyglenis sp.) mimicking the Vestria katydid nymph. Photo by Paul Bertner

Riodinid pupa (Brachyglenis sp.) mimicking the Vestria katydid nymph. Photo by Paul Bertner

 

From a blattodean to Nilio beetles

This is the story about how a small blattodean taught me something I did not know about beetles.

While photographing frogs in the Ecuadorian Amazon this past October, I noticed a tiny insect running across the surface of a fallen leaf resting on the forest floor. It had bright colors and looked interesting, so I collected it in hopes to photograph it later. When I finally got to do it, I was struck by its deception. You see, when I initially spotted it I thought it was a beetle. The dome-shaped body and the bright coloration resembled those of some leaf beetle species (family Chrysomelidae), and this insect even moved and walked like a beetle. Nevertheless, a close inspection revealed that its whole body was segmented. This was no beetle. It was a blattodean nymph.

Beetle-mimicking cockroach nymph

Beetle-mimicking cockroach nymph

Beetle-mimicking cockroach nymph. What could be the model species?

Beetle-mimicking cockroach nymph. What could be the model species?

Beetle-mimicking cockroach nymph

Beetle-mimicking cockroach nymph

Blattodeans exhibit some beautiful examples for mimicry, with some species resembling poisonous fireflies and venomous assassin bugs. It should come as no surprise that a blattodean might benefit from looking like a leaf beetle. While many leaf beetles are harmless, some species harbor chemical compounds that make them poisonous or distasteful to predators. Unfortunately, identifying a blattodean from its larval stage is very tricky and close to impossible. I was not able to locate anything that looked like the adult stage of this species. However, when I examined this cute blattodean I remembered that I have seen this color scheme on a leaf beetle before, and after digging in my old photo archive I was able to find the record.

Leaf beetle. Or is it?

Leaf beetle. Or is it?

I took this photo on one of my first visits to Ecuador, over a decade ago. I did not plan to do anything with the photo, but I thought it was a nice-looking leaf beetle and so I snapped a quick photo for my own records. Only I was completely off. This is not a leaf beetle.

Unlike most of its family members that are elongated and dull-colored, Nilio is a genus of darkling beetles (family Tenebrionidae) that bear a striking resemblance to leaf beetles and ladybugs. This resemblance can fool even experienced entomologists. Darkling beetles are well-known for their chemical defense, secreting odorous chemicals that will deter even the most enthusiastic field entomologist. This can explain the blattodean mimicry shown above.

This is not a leaf beetle but a darkling beetle (Nilio sp.)

This is not a leaf beetle but a darkling beetle (Nilio sp.)

After I realized these photos show a species of Nilio, I checked the rest of my photos from the very same trip, and started finding more photos of Nilio species.

Darkling beetle larvae (Nilio sp.) feeding on lichens

Darkling beetle larvae (Nilio sp.) feeding on lichens

Here is a group of larvae on a branch. Nilio larvae are gregarious (live in groups) and feed on epiphytic lichens. If you have ever seen the typical wire-worm larvae of darkling beetles you will understand why I labeled this photo as “chrysomelid larvae” in my archive.

Darkling beetles (Nilio sp.) aggregating next to pupation site

Darkling beetles (Nilio sp.) aggregating next to pupation site

In some species, not only the larvae, but also the adults, are gregarious. Here is a group of adults I found on a tree trunk close to their pupation spot. Like the larvae, these adults were feeding on lichens as well.

A closer look at the Nilio beetles aggregation

A closer look at the Nilio beetles aggregation

As you can see, not all Nilio species have bright coloration as the species shown above. However, even when they are closer to their “darkling roots” they still look more like to members of Chrysomelidae than Tenebrionidae. This all goes to show that even when you are confident about your knowledge of insect taxonomy or biodiversity, nature can still surprise you. I embrace these moments when I am caught unprepared; nothing like learning something new!

Photographing Richardia – a long way to victory

Inside a wooden cabin on the outskirts of the peaceful town Mindo, I am standing on my bed, arms spread sideways. My bright headlamp is on at full output, to overcome the cabin’s dim lights. In a few seconds Javier will step in through the door to pick me up for our night hike in the cloud forest. And he will probably want to know what the hell I am doing.
I am trying to find a 5mm-long fly.
Suddenly, I see it. That tiny spec of an insect. Hanging upside down from one of the ceiling boards. I am reaching out for my pocket to grab a vial. The sound of footsteps climbing up the stairs is getting louder and louder. “Gil, are you there?” Great timing. I must keep my focus or that fly will be gone the moment Javier walks in.
-“Don’t open the door!!!!”

Back in 2015 I contacted Paul Bertner regarding a fly that he photographed in Mindo. It was an antlered fly from the genus Richardia. Ever since I learned about these flies in the introduction course to entomology, I have always wanted to see them in the wild. Males have antler-like projections from their eyes, which are used for pushing an opponent during a combat over territory or a mate. The female Richardia lacks those projections, but is characterized by a telescopic ovipositor at the tip of her abdomen, used for injecting eggs into fruits and other plant tissue. Paul was very kind to share his observations with me, wishing me luck in finding them on my next trip to Ecuador.

This small-antlered fly (Richardia sp.) is feeding on amphibian feces. Many of these flies are attracted to animals' droppings, from which they obtain valuable nutrients.

This small-antlered fly (Richardia sp.) is feeding on amphibian feces. Many of these flies are attracted to animals’ droppings, from which they obtain valuable nutrients.

It took time and determination, but I did manage to find the flies eventually. In the brief window that they were active I took some shots, but I was completely unsatisfied with them. It seems that with Richardia, practice makes perfect. Or should I say, masochism makes perfect. You see, these flies are not only active during a very specific time of the day, on the underside of leaves of specific plants, but they are also extremely skittish. Highly territorial, the antlered males respond to any movement in their surroundings, and that includes a person carrying a big black camera. They take off and vanish almost instantly. And then, in hiding, they wait. What for I am not sure, but only a handful of times the males actually returned to their perch under the leaf. Unfortunately, I had to leave the site before I could take any decent photos. So, the following year I came back to the exact spot again. And there they were in all their splendor! I tried again to photograph the flies in their habitat on the leaves, but since they usually sit on the underside it was tricky. I spent hours with them, only to come up with lousy shots. No, I had to be creative with these Richardia.

Another male Richardia sp. with small antlers

Another male Richardia sp. with small antlers

Richardia flies spend their nights sleeping hidden in folded leaves like this rolled bromeliad leaf. Inside they are protected from many nocturnal predators, such as mantids, ants and spiders.

Richardia flies spend their nights sleeping hidden in folded leaves like this rolled bromeliad leaf. Inside they are protected from many nocturnal predators, such as mantids, ants and spiders.

And so after some thinking I came up with the idea of working at night. The flies are diurnal, in other words they will be less active when it is dark. Or at least that’s what I thought. It was still a very exhausting experience to photograph them (it reminded me of the time I was trying to photograph Sabethes mosquitoes). As I mentioned, Richardia are very responsive and will keep moving and exploring unless they stop to clean themselves up. Every time I had the fly framed and in focus, it would travel to the other side of the leaf. Several times it would escape and I would have to go look for it in the cabin. If you think locating a small flying insect in a messy wooden cabin is easy, think again. I found myself crawling on the furniture and slowly sliding my face against the walls and floors, and when I found the fly eventually I was shocked that I was able to see it at all. I nearly lost my mind trying to photograph it. Will I be defeated by a tiny fly?

Male antlered fly (Richardia sp.). Mindo, Ecuador

Male Richardia fly with impressive antlers

After most of the evening time was lost due to the insect’s aforementioned escapes, I decided to come up with another method to control it during the shoot. It required another pair of hands, so I asked my friend Javier Aznar, who I just met in person a couple of days before, to assist. In fact, without Javier’s help I would probably not get any usable shots. I thank him for putting up with me and for keeping my sanity during those difficult hours. “Nothing is impossible”, he told me. He probably thought I was crazy for spending so much time photographing a single fly. Well, it is somewhat true, if you consider the fact that I came back to Mindo just for that purpose. This time, I am very happy with the photos. There will probably be other chances to photograph Richardia flies, but I got precisely what I came for. And it felt like a small victory.

The antlers are thin projections coming out from below the fly's eyes.

The antlers are thin projections coming out from below the fly’s eyes.

The head of a male antlered fly (Richardia sp.) in all its glory. This is the shot I had in mind!

The head of a male antlered fly (Richardia sp.) in all its glory. This is the shot I had in mind!

Not all Richardia species have antlered males, by the way. Some species have no such ornamentation/weaponry at all, yet I still think they are stunning flies with their colorful eyes, decorated wings and shiny bodies.

Mating richardid flies. This species is antler-less, but nevertheless they are very beautiful.

Mating richardid flies. This species is antler-less, but nevertheless they are very beautiful.

Another group of species have had the head morphology evolving in a completely different direction. Instead of having antler-like projections coming from below their eyes, males evolved wide heads. These flies are sometimes called hammerheads, due to their striking resemblance to hammerhead sharks. They are also often mistaken for stalk-eyes flies, however the latter belong to a separate family of flies (Diopsidae, not Richardidae) distributed mainly in tropical regions of Asia and Africa. The hammerhead Richardia can sometimes be seen on the underside of broad leaves such as those of banana and heliconia plants. Males engage in head-pushing tournaments while a single female usually stands by watching and waiting for the winner to approach. He will then display a short dance, running in circles and waving his decorated wings, before mating with her.

Male hammerhead fly (Richardia sp.). This one was scouting out a female on a nearby leaf.

Male hammerhead fly (Richardia sp.). This one was scouting out a female on a nearby leaf.

Hammerhead fly (Richardia sp.). Mindo, Ecuador

Male hammerhead fly (Richardia sp.) with “demonic” eyes

The female hammerhead Richardia has a less pronounced head

The female hammerhead Richardia has a less pronounced head

If you remember my previous post, Richardia flies are not immune to infections, and they are occasionally found “glued” to the underside of leaves after being killed by an entomophagic parasitic fungus (Ophiocordyceps).

An unlucky Richardia fly infected with Ophiocordyceps parasitic fungus. Mindo, Ecuador

An unlucky Richardia fly infected with Ophiocordyceps parasitic fungus. Mindo, Ecuador

I should mention another fly species, an extreme case of a hammerhead fly. Unlike Richardia, this one belongs to another family, Ulidiidae. Plagiocephalus latifrons is probably the closest neotropical equivalent to the old-world stalk-eyed flies, with a head so wide and so disproportional to the rest of the body that it looks more like someone’s prank than a real living animal.

Male hammerhead fly (Plagiocephalus latifrons), dorsal view. One of the most amazing fly species out there in my opinion!

Male hammerhead fly (Plagiocephalus latifrons), dorsal view. One of the most amazing fly species out there in my opinion!

Male hammerhead fly (Plagiocephalus latifrons), frontal view. I cannot imagine this head being very aerodynamic, but you'd be surprised to hear that they are excellent fliers

Male hammerhead fly (Plagiocephalus latifrons), frontal view. I cannot imagine this head being very aerodynamic, but you’d be surprised to hear that they are excellent fliers

The eyes are so wide apart on the tips of the head, that it makes me wonder what these flies see. I am also curious as to how these flies look like at the exact moment when they emerge as adults from their puparium. Surely this whole elongated head cannot fit inside the compact oval puparium within the last larval skin, so it must get pumped up and expanded right after the fly’s eclosion (the BBC has a nice video showing this in a stalk-eyed fly). I would love to see this process in person one day – there is still so much to discover!

The Plot Thickens: One unlucky earwig

(or why you should not get attached to whatever you encounter in the wild)

Isn’t being outdoors the greatest thing in the world? Surrounded by the soothing beauty of nature, while observing species living together in harmony? It is easy to lose sense of reality sometimes. But things are not always what they seem, and this serenity is often deceiving. We do not like to think about it, but nature is a harsh environment. There is a constant struggle for survival, many animal and plant species compete with each other over resources and breeding space. In fact, many of the animals we humans encounter in the wild are already on their way out of the game, either due to senescence, diseases, pathogens or parasites. I always try to remind myself that if I stumble upon an elusive animal active beyond its normal activity time, and it is not startled by my presence, then something fishy is going on here.

That being said, I admit that many times my sound judgment is clouded by the sheer excitement of finding something I have never seen before. Case in point: During one of my visits to Mindo cloud forest in Ecuador, I came across a beautiful specimen of earwig.

Giant earwig (Allostethus sp.). Mindo, Ecuador

Giant earwig (Allostethus sp.). Mindo, Ecuador

In general, earwigs suffer from a bad reputation, or lack thereof. While many people simply ignore them because they do not find them interesting, others find them terrifying due to their menacing-looking pincers. Nevertheless, these animals are both fascinating and harmless. First, they have interesting behaviors. Pairs often construct a breeding chamber together, and females display maternal care, tending the eggs and baby earwigs until they can fend for themselves.

Giant earwig (Allostethus sp.) guarding the entrance to its burrow. Breeding pairs of earwigs construct such chambers, where the female later cares for the brood. Amazon Basin, Ecuador

Giant earwig (Allostethus sp.) guarding the entrance to its burrow. Breeding pairs of earwigs construct such chambers, where the female later cares for the brood. Amazon Basin, Ecuador

Second, earwigs cannot cause any injury to us. They cannot bite, and they possess no stinger or venom. Some species have an unpleasant odor, but you should not go sniffing animals that sport a pair of pincers anyway… Earwigs are omnivorous, and although they mainly feed on plant matter, they often use their modified cerci (the pincers) to manipulate soft prey such as moths and insect larvae. Earwigs are usually seen crawling on the ground or on plants, clumsily dragging their elongated body. However, they are also good fliers – underneath those square leathery forewings are neatly folded flight wings. During flight they spread like a delicate fan.

Detail of earwig wing. Ontario, Canada

Detail of earwig wing. Ontario, Canada

The earwig I found in Mindo belonged to the genus Allostethus (family Labiduridae). It is a beautiful animal, with a length of up to 35mm, a shiny black body and orange legs, and each of its forewings is decorated with a bright orange patch. I found it active on a mossy tree trunk in broad daylight, something I should have regarded to as suspicious, as earwigs are nocturnal insects. In any case, I did not give it much thought and collected the specimen, hoping I could later get some behavioral shots of it preying.

Giant earwig (Allostethus sp.), what a magnificent beast!

Giant earwig (Allostethus sp.), what a magnificent beast!

However, I waited too long. In the evening the animal stopped moving and appeared dead. I was devastated. It still looked healthy, no signs of injury, starvation, or poisoning. I decided to keep it in the vial and moved on to other work. The next morning I had my first evidence of the culprit – the earwig started to grow some whitish “fur”.

Giant earwig (Allostethus sp.) covered with entomophagic fungus. What a magnificent beast?

Giant earwig (Allostethus sp.) covered with entomophagic fungus. What a magnificent beast?

This was not, of course, fur per se, but small filaments indicating an infection by a parasitic fungus specifically feeding on insects. Parasitic entomophagic fungi (such as Cordyceps and Ophiocordyceps) are extremely common in the tropics. Moreover, they are so diverse that many of their species are host-specific. In other words, a certain fungus species attacks only arthropods from a specific order or family. Typically, the growing fungus inside the still-living arthropod alters its normal behavior, causing it to roam in unusual locations, and often outside of its normal range of activity hours. In many cases the infected animal climbs on nearby tree trunks, branches, or positions itself on the underside of a leaf. This is done to allow better spread of spores from the fungus fruit bodies.

Detail of the fungus feeding on the earwig

Detail of the fungus feeding on the earwig

Seeing that stunning earwig giving in and dying was heartbreaking, but it is important to remember it happens every day in nature. When walking in a tropical forest, there are signs of death by entomophagic fungi all over the place. It is hard to avoid corpses of ants, grasshoppers, moths, and beetles, all with bright fungal horns and tubers sticking out of their bodies. However, it is extremely hard to predict if a living arthropod is already infected with the fungus or not. Many times I have seen insects that behaved like “zombies”, only to later find out that they were harboring a parasitoid wasp or a parasitic worm. Looking for early signs of a fungus infection is trickier, but at least now I am a little bit wiser. I will know what to do the next time I see an earwig climbing up a tree at daytime.

Diaethria – a festive caterpillar with antlers!

In my last trip to the Amazon basin of Ecuador I had the fortune of meeting Paul Bertner, an acclaimed photographer and adventurer. I have been following his image posts and trip reports since I cannot remember when (and you should too!), and was excited to spend some time in the field with him, in hopes of learning some new tricks. It was great fun to discover hidden gems in the rainforest together, while discussing arthropod biology, conservation and photography.

During one of our night hikes we came across a tiny green caterpillar that was resting on a silky retreat on top of a leaf. At first glance it did not look very special, but then I noticed that its head featured two enormous antler-like horns. The horns were almost half the caterpillar’s body length! They were not simple straight horns, but rather complex structures that included many branches and hairs. I recognized the caterpillar as a member of tribe Biblidinae in the butterfly family Nymphalidae, but only later learned that it belongs to genus Diaethria.

Eighty-eight caterpillar (Diaethria sp.) with complex antler-like horns. Amazon Basin, Ecuador

Eighty-eight caterpillar (Diaethria sp.) with complex antler-like horns. Amazon Basin, Ecuador

Despite their small size, Diaethria butterflies are quite well-known thanks to the characteristic pattern on the underside of their hindwings. Circular bands in black and white surrounding black dots, giving the impression of the letters BB, Bd or the the numbers 88, 89, 69 etc’. The common names “88 butterfly” and “89 butterfly” are typically used for species in this genus. They are often seen puddling – an interesting behavior in which butterflies take up minerals from mud, sweat and feces.

Eighty-eight caterpillar (Diaethria sp.) is sometimes seen waving its horns while walking.

Eighty-eight caterpillar (Diaethria sp.) is sometimes seen waving its horns while walking.

Upon seeing the caterpillar I knew exactly how I want to photograph it. I wanted a frontal, head-on photo of the caterpillar’s head with the antlers stretched up in their full glory. What photo is more suitable for the holiday season than a festive caterpillar? Unfortunately, I did not have my high magnification MP-E lens with me (as mentioned, the caterpillar was tiny), so I gently collected it to photograph later. Let me tell you, photographing it was not an easy task. It seems that the caterpillar’s default behavior is to rest face down on the leaf, preventing any view of its antlers other than a dorsal one. It literally took hours to get it to change position, and I had to come up with a creative solution to get something remotely similar to the photo I had in mind.

This deer-mimicking caterpillar wishes you happy holidays and a happy new year!

This deer-mimicking caterpillar wishes you happy holidays and a happy new year!

One question that comes to mind is how do these caterpillars molt with such long head protrusions? Do the horns come out already stretched from the old head capsule or are they compressed as horn “buds” that inflate later? And what are those horns good for? They are most likely an adaptation against predators, but it is hard to say exactly how they are used. They can be used as defense to push away ants from attacking the caterpillar, or maybe the caterpillar drives away parasitoid wasps by waving the antlers from side to side. Hopefully someone will be able to document their function in the future and shed light on these remarkable structures.

 

This leaf got me thinking

I sometimes like to drift away in my thoughts and reflect on my days before becoming a biologist. It is amazing to realize how much I have learned over the years. This is something I think many people take for granted nowadays. We are flooded with easily accessible information on a daily basis. Try to think how many new things you learned just in the last month.
A little over a decade ago, I embarked on my first big overseas trip. Back then I knew close to nothing about Latin America. I had one goal in mind: to see poison dart frogs in the wild. Not too long into the trip I already felt victorious, after spotting some of these frogs in Bolivia and Ecuador. My quest took me to Costa Rica, where I found more of these stunning hopping jewels. Although I was mainly interested in amphibians, I was overwhelmed by the richness and diversity of arthropods. And more interestingly, despite my knowledge and exposure to various insect species, I realized how much I do not know and need to learn.

One such moment occurred when I visited the pastoral town of Monteverde, more specifically the butterfly gardens there. The guided tour I took passed near a moth wall, which was basically a white painted wall with a powerful light source pointing at it during nighttime. This was the first time I have ever seen a light trap. It was packed with hundreds of moth species. I was fascinated. The other visitors – not so much. They were pressing me to leave these “boring brown bugs” so we can head over to the butterflies area. “Just a second” I replied, “there is one moth I have to photograph”.

Leaf-mimicking moth, Monteverde, Costa Rica

Leaf-mimicking moth, from Monteverde, Costa Rica. Amazing camouflage, down to the level of leaf (=wing) damage and asymmetry. Image scanned from an old film slide.

“That’s not a moth” argued one of the visitors, “it’s just a fallen leaf that was blown onto the screen door”.
The local tour guide smiled but kept his silence.
“Well, if it is just a leaf…” I said and stood up, “…why don’t you touch it then?”
Upon being touched, the “leaf” immediately came into life and took off in a slow flight, disappearing into the foliage.

Many insects try to look like leaves. It is one of the most common types of crypsis. Only some of these insects, however, take it to the next level, mimicking not only the shape and color of leaves, but also their texture, tissue damage and even asymmetry. This moth had all of these. For years I have been waiting for an opportunity to photograph such a moth again, and finally, last year, I stumbled upon a similarly impressive species in the Amazon basin of Ecuador.

Leaf-mimicking saturniid moth (Homoeopteryx sumacensis), Amazon Basin, Ecuador

Leaf-mimicking saturniid moth (Homoeopteryx sumacensis) from the Amazon Basin, Ecuador. It was resting on the bathroom floor – I do not think I would be able to see it if it was resting among fallen leaves.

This species does look (and behave) very much like a leaf. Instead of laying flat like most moths, it holds its wings up in a way that creates a three-dimensional appearance. The forewing tips and margins are delicate; they are usually the first part to suffer tears and damage, contributing to the asymmetrical look of the false leaf. I knew immediately that I want to keep this photo for something special, and I decided to share it on the last day of National Moth Week. After posting it, the internet went wild. The photo was shared hundreds of times on social media, sparking discussions about evolution and moth diversity. It encouraged people to post their own photos of cryptic moths; others messaged me that the photo helped them to see the beauty and uniqueness of moths. I could not be happier.

Leaf-mimicking saturniid moth (Homoeopteryx sumacensis), Amazon Basin, Ecuador

From this angle it is easier to see that it is a moth. Leaf-mimicking saturniid moth (Homoeopteryx sumacensis)

It is important to remember though, that this moth is just one small example from a vast world of moths. There are over 150,000 species of moths worldwide, many undescribed, and many more waiting to be discovered. Moths are everywhere. There is more to them than meets the eye. They take many forms, and can sometimes make you doubt yourself. Until that moment in Costa Rica I was not aware these leaf moths existed, and even today I am not certain of their exact species ID*. Even nowadays within the highway of free information, I still have a lot to learn.

The positive feedback this photo received, as well as my orchid bees photo, made me realize also how much I am grateful for all the people who find my content interesting or inspiring. I never mention this, but it gives me a lot of energy. When things get rough, I remind myself that there is at least someone out there who thinks what I do is cool. I want to take this opportunity to thank all my followers, commenters and visitors. I got to know some fascinating people since I started posting. Thank you, everyone.

*UPDATE: This moth has been identified by Vazrick Nazari from the Canadian National Collections as Homoeopteryx sumacensis, a saturniid moth.

(Inter-)National Moth Week

When all that people talk about right now is going outdoors with their smartphones and tablets to play the current-trendy Pokémon Go, an augmented reality game of hunting fictional creatures, it seems appropriate to remind everyone that a similar “game” was already in existence centuries ago and still goes on today. It is called being a naturalist, and the rules are pretty simple – you just go out to search for, observe, and document everything that nature has to offer. I guess making people spend more time outside is a good thing nowadays, I just wish they were looking more around them instead of having their faces glued to mobile screens. Nevertheless, many players reported that while playing the game they stumbled upon “real life Pokémon”, in other words wild animals such as snakes, birds and even mammals. Several biologists on twitter decided to take a nice turn on this game and came up with the hashtags #PokeBlitz and #PokemonIRL, tagging and spreading facts about various wild animals, plants and fungi. It is a cool initiative that I hope will spread like fire, but in any case I wanted to use this opportunity to mention another similar event happening this month – National Moth Week.

Geometer moth (Rhodochlora brunneipalpis), Limón Province, Costa Rica

Green geometer moth (Rhodochlora brunneipalpis) from Limón Province, Costa Rica

National Moth Week is a citizen science project that sets out to increase public awareness and appreciation of moth biodiversity. It has been running continuously for 5 years, with the main event taking place on the full last week of July. During this week, moth enthusiasts set up light traps to attract moths and record the species found in their area. They are often joined by professional lepidopterists (scientists studying this insect order), who offer assistance in identifying moth species and wait for cool and unexpected discoveries. With the current accumulating evidence of dwindling insect populations, especially those of pollinators like Lepidoptera and Hymenoptera, this activity has huge importance. National Moth Week has become a global joint effort to record moth species, yet the project’s title remains “national” to emphasize the outreach activity on the local scale. Anyone can join and attract moths in the comfort of their own home, but many groups hold moth-watching events at public locations, attracting a large crowd of enthusiasts and curious people (you can attend an event close to you by searching in the event map).

Crambid moth (Desmia bajulalis), Mindo, Ecuador

Many Crambid moth species, like this Desmia bajulalis from Ecuador, have iridescent scales on their wings.

Setting up a light trap for moth watching is super easy. All you really need is a light source, and turning on the porch lights is probably the simplest way to attract moths. If you want to invest a little more, you can get a light bulb with some output in the UV range, as many moth species are attracted to this type of light. Many entomologists and insect enthusiasts use high-output mercury vapor bulbs because their spectral range seems to be more attractive for insects compared to other bulbs. Personally, I do not like these bulbs; they are very fragile, become extremely hot during operation and quite finicky to set up in remote locations. I use a compact version of a bulb that has a similar spectral distribution and get good results. My setup is built to be portable, so I now take my light trap almost anywhere I travel.

White witch moth (Thysania agrippina). Amazon Basin, Ecuador

Sometimes a light trap is not even needed for attracting moths. This gigantic white witch moth (Thysania agrippina) came to our bathroom lights in the Amazon rainforest, Ecuador.

light-trap

The light trap I used at Caves Branch, Belize, attracted a nice variety of interesting moths, including members of genus Petrophila (mentioned previously on this blog).

Moths attracted to light trap, Mindo, Ecuador

Moths (and other insects) gathering around a light trap in Ecuador

Moth feeding on top of another moth's wing, Mindo, Ecuador

When it gets crowded at the trap interesting behaviors can be observed, like this small moth feeding on a bigger moth’s hemolymph.

Finally, if you want to be able to record the species coming to your trap, you will need a surface for them to rest on. The simplest way to do this is by stretching a white sheet behind the light source. The flying moths will come to the trap, bump into the sheet and cling onto it, allowing close observation and photography. Not only moths, but also other arthropods can end up coming to the light trap as well. And, if you are lucky, even amphibians and reptiles can show up to take advantage of the abundant food.
The best thing about setting up light trap is that you never know what will show up. It is not uncommon to encounter a species that you do not know, or even better, find something that is very rare.

Geometer moth (Eutomopepla rogenhoferi), Mindo, Ecuador

Geometer moth (Eutomopepla rogenhoferi) from Mindo, Ecuador

Giant silk moth (Rhescyntis hippodamia). Amazon Basin, Ecuador

Giant silk moth (Rhescyntis hippodamia), one of the heaviest and largest moth species found in the Amazon Basin of Ecuador.

Geometer moth (Opisthoxia uncinata), Limón Province, Costa Rica

Geometer moth (Opisthoxia uncinata), from Limón Province, Costa Rica. This is probably one of the most common species in Latin America, it showed up in every light trap I have set up so far.

Wasp-mimicking moth (Gymnelia sp.), Mindo, Ecuador

Do not forget to check the surroundings of the light trap for even more species! This wasp-mimicking moth (<Gymnelia sp.) from Ecuador was found resting on the wall a few meters from the trap.

White geometer moth, Limón Province, Costa Rica

Some moths remind me of common butterflies. For example, this moth from Costa Rica somewhat looks like Small White (Pieris rapae)…

Giant silk moth (Titaea tamerlan). Amazon Basin, Ecuador

Giant silk moth (Titaea tamerlan) from the Amazon rainforest of Ecuador

Green moth (Epidelia sp.), Caves Branch, Cayo District, Belize

Green moth (Epidelia sp.) from Belize

Crambid moth silhouette, Mindo, Ecuador

Even a silhouette can be interesting! Crambid moth from Mindo, Ecuador.

Owlet moth (Sosxestra grata). Caves Branch, Cayo District, Belize

Sosxestra grata has become one of the most iconic Latin American owlet moth species, thanks to an excellent photograph taken by Thomas Shahan in BugShot Belize.

Crambid moth, Mindo, Ecuador

Some of the nicest wing patterns are found on the smallest species, like this delicate Crambid moth from Mindo, Ecuador.

So go out, and enjoy this fun activity. Moth-watching is the new birding. In fact, it might even be better than birding. It requires much less effort and preparations. In addition, the diversity of moth species found in a limited area can be astounding compared to that of birds. There is so much out there to discover, you really just have to look.

Trachycephalus – that treefrog you shouldn’t touch

When people talk about nasty frog secretions the conversation usually shifts very quickly to poison arrow frogs and their toxins. And it is not surprising – these tiny frogs host some of the deadliest compounds in the natural world, some so toxic that they are even lethal to the touch. But the truth is many amphibians have skin secretions, and not all of them are meant to be deadly. One group of treefrogs in particular made a name for itself due to their skin secretions – the milk frogs (genus Trachycephalus).

I encountered one of these treefrogs earlier this year when I returned from a night hike in the Amazon rainforest of Ecuador. Walking and climbing for hours made me exhausted, and the only thing I could think of was crashing into the bed and getting a few hours of sleep. Suddenly I heard Andy, one of the staff members from the reserve, calling from the shower. I remember thinking to myself ‘It is 2am, what on earth is he doing in the shower?’
I got up and clumsily walked towards the shower where I found Andy pointing at a big blob completely covering the showerhead. He did say “rana” which means frog in Spanish, so I reached out my hand to grab it. Big mistake.

Common milk frog (Trachycephalus venulosus), Amazon Basin, Ecuador

Common milk frog (Trachycephalus venulosus), Amazon Basin, Ecuador

At that time I knew about milk frogs only from the pet trade. The species Trachycephalus resinifictrix is a very popular pet because of its colors and docile temper. I had no idea why members of this genus are called milk frogs, or how they behave in the wild. And so I learned the hard way, that milk frogs are named after their thick, sticky skin secretion. Within seconds of grabbing this giant amphibian my hands were tangled in a gooey mess of what looked and felt like carpenter’s glue. This defensive secretion has very interesting properties – it sticks to anything touching the frog, but in contact with the amphibian’s skin it becomes extremely slimy and slippery, allowing the frog to escape from its captor. Trying to wash it off with water only makes things worse (i.e. thicker and stickier), as it is not water-soluble. I looked for information about the chemical attributes of this substance, but came up with nothing. The only description I found for it was “caustic” (alkaline), and that it seems to be poisonous too.

I know what some of you are thinking – where are the photos of the frog in your messy hands? Trust me when I say this, it is impossible to do anything while dealing with this gluey secretion, let alone operating a camera. I spent an hour and half in the bathroom sink obsessively trying to get rid of the stuff. Unless you have something to scrape your hands with, this is not a simple task. Eventually, I managed to somewhat clean my hands, and decided to keep the frog for a short photography session.

Common milk frog (Trachycephalus venulosus), Amazon Basin, Ecuador

“Now be a good girl and behave.”

The species I found was the common milk frog (Trachycephalus venulosus), and it is massive. When we think of treefrogs we tend to fixate on those small or medium sized species, usually green or yellowish in color, often delicate in their appearance to allow swift movement in the forest canopy. However, some species are impressively robust, so much that when they leap and land on a branch they sometimes break it under their body weight. This is the case for the milk frog, I could not believe my eyes how big it was. Females can reach a length of over 10cm and have a body mass of over 90gr. They are indeed heavy jumpers, and they deploy an interesting strategy during landing to better support their body weight: the frog either lands on its abdomen or performs a cartwheel around the branch, while only attached by their adhesive toe pads. Trachycephalus venulosus is an explosive breeder, coming down the canopy to breed after heavy rains. Males congregate around water ponds and wrestle for females. It is often a violent event, after which males and females move together in amplexus (males “piggyback riding” the females) to lay eggs on the water surface.

Common milk frog (Trachycephalus venulosus; right) with a more typically-sized treefrog (Agalychnis hulli; left)

Common milk frog (Trachycephalus venulosus; right) with a more typically-sized treefrog (Agalychnis hulli; left)

After I got the frog’s sticky glue off my hands along with some of my own skin, I went back to bed. The frog was chilling out in a bucket beside me. In the following morning, I decided to photograph it in “Meet Your Neighbours” style before letting it go. I soon found out that if one is careful, the milk frog can be handled without triggering the defense response. When calm this frog is rather sweet actually, I think I can even see a smile in some of those photos ha ha. I released it back into the forest, putting it on a low tree branch. To my surprise it did not escape immediately. Only when I turned around and started walking away I heard a cracking sound followed by something crashing into leaves. Yup, that’s one heavy treefrog.

Common milk frog (Trachycephalus venulosus), Amazon Basin, Ecuador

Best buddies.

Teenage Mutant Ninja Orchid Bees

Whenever I visit Latin America I make sure to leave some time for observing orchid bees in activity. This means my morning routine is usually very brief: a quick breakfast, some reorganization of gear from the previous night hike, and heading out. The bees are usually active between 7:30-11am, so it is a race against the clock to locate them in the rainforest.

A month ago I posted a photo on my social media accounts showing a group of Euglossa bees collecting fungus threads from tree bark in Costa Rica. Since then, this photo has become very popular and has been shared and retweeted thousands of times (unfortunately, a big chunk of these shares is by people who uploaded the photo to their pages without my permission). This is currently my most shared photo to date. Even as of writing this post, one month after posting the photo, it still generates new likes, shares, and comments. In fact, the title of this post, “Teenage Mutant Ninja Orchid Bees”, is taken directly from the comments, as some people noted the photo reminded them of Teenage Mutant Ninja Turtles.

A group of colorful orchid bees (Euglossa hansoni, E. sapphirina and E. tridentata) collecting fungus filaments from tree bark, Limón Province, Costa Rica

A group of colorful orchid bees (Euglossa hansoni, E. sapphirina and E. tridentata) collecting fungus filaments from tree bark, Limón Province, Costa Rica

While I will argue that in order to truly appreciate the beauty of orchid bees one must observe them from a close distance, this photo does represent well their diversity (showing three distinct Euglossa species) and variation (the “red” and “orange” bees belong to the same species). Soon after the photo spread through the internet I was flooded with questions about orchid bees, so I thought it would make a nice opportunity to write a post about them and address some of the inquiries.

That orange bee (Euglossa hansoni) from the group photo above? This is what it looks like when viewed from up close. Words cannot describe this beauty.

That orange bee (Euglossa hansoni) from the group photo above? This is what it looks like when viewed from up close. Words cannot describe this beauty.

Are you sure these are not flies? Despite bearing a strong resemblance to bottle flies, these insects are indeed bees: orchid bees are members of tribe Euglossini which contains five genera: Euglossa, Eulaema, Eufriesea, Exaerete and Aglae. They are somewhat closely related to the eusocial honey bees and bumblebees, however most orchid bees lead a solitary lifestyle. The genera Exaerete and Aglae are cleptoparasites, developing in the nests of other orchid bees. There are about 200 species of orchid bees, distributed only in the Americas, mostly in Central and South America. Only one species occurs in the United States. Like many other bees, orchid bees collect nectar, pollen and resin from plants. They can be distinguished from other bees by their shiny metallic coloration and their extremely long tongues, which can be twice the length of the body. Most of the time the tongue is folded underneath the body and extends behind the abdomen.

Orchid bees can be easily found near fragrant orchids. This male was spotted hovering near a vanilla flower. Photographed in Caves Branch, Cayo District, Belize

Orchid bees can be easily found near fragrant orchids. This male was spotted hovering near a vanilla flower. Photographed in Caves Branch, Cayo District, Belize

Male orchid bee (Euglossa sp.) collecting resin from tree bark. Photographed in Toledo District, Belize

Male orchid bee (Euglossa sp.) collecting resin from tree bark. Photographed in Toledo District, Belize

Are they dangerous? Can they sting? Orchid bees are far less dangerous than honey bees. Being solitary (excluding a few species that are communal), orchid bees have no colony or a queen to defend. That being said, female orchid bees do possess a stinger, which they will not hesitate to use when threatened. Interestingly, the females are very rarely encountered. I have encountered them only near stream banks, collecting clay mud for construction of their nest. Most of the bees observed in the rainforest are males. Although their folded tongue sticking behind the abdomen may look like a stinger, males have no stinger and pose no danger to anyone.

Male orchid bee (Euglossa sp.) in mid-flight, showing its long tonguefolded underneath the body. This is not a stinger! Photographed in the Amazon Basin, Ecuador

Male orchid bee (Euglossa sp.) in mid-flight, showing its long tonguefolded underneath the body. This is not a stinger! Photographed in the Amazon Basin, Ecuador

Why are they called orchid bees? Male orchid bees exhibit an interesting and unique behavior – fragrance collection. They collect and store different volatile compounds, some of which are found in orchid flowers. To get the right mixture of chemicals, they sometimes travel long distances in flight. Being able to detect the tiniest amount of a desired compound in the air, the bees home-in on the scent column and navigate to it with impressive accuracy. Once landed at the site, the males scrape the odorous compounds using modified brushes on their forelegs, and then while in mid-air transfer and press them into special storage chambers in their hind legs. The process is repeated until the bee has collected enough of the chemical. The purpose of collecting the fragrant compounds is not entirely clear, but it is strongly believed that they play an important role in mate choice by the females, just as perfume is used to attract a mate in humans.

Male orchid bee (Euglossa intersecta) collecting fragrant compounds from tree bark. Note the long hairs on the forelegs that assist in scraping the chemicals. Photographed in the Amazon Basin, Ecuador

Male orchid bee (Euglossa intersecta) collecting fragrant compounds from tree bark. Note the long hairs on the forelegs that assist in scraping the chemicals. Photographed in the Amazon Basin, Ecuador

Male orchid bee (Euglossa sp.) collecting fragrant compounds from tree bark. The chemicals are stored in special chambers located in hind tibia. Photographed in the Amazon Basin, Ecuador

Male orchid bee (Euglossa sp.) collecting fragrant compounds from tree bark. The chemicals are stored in special chambers located in hind tibia. Photographed in the Amazon Basin, Ecuador

To collect a variety of scents, the bees visit primarily orchids flowers, but also other flowers, tree wounds, fungi and even corpses. One species was even recorded collecting the insecticide DDT without suffering any damage from the chemical.
The fragrance collection behavior allows the attraction of males using different baits containing essential oils, and can be useful for biologists to learn about their seasonal abundance and diversity.

A carefully selected site for bating orchid bees can attract a few dozens of males, as seen here. Photographed in Cayo District, Belize

A carefully selected site for bating orchid bees can attract a few dozens of males, as seen here. Photographed in Cayo District, Belize

Some fragrant orchids have evolved different adaptations to take advantage of this perfume-seeking behavior, which involve the male bees pushing or crawling into the flowers, triggering a mechanism that glues a pair of pollen packets (called pollinia or pollinaria, depending on the type of plant tissue involved) on the bee’s head or thorax. These pollen packets will travel with the male bee to the next flower to complete the pollination process.

Male orchid bee (Euglossa cyanura) pollinating the orchid Gongora maculata. Note the pollen packets glued on the bee's back. Photographed in Toledo District, Belize

Male orchid bee (Euglossa cyanura) pollinating the orchid Gongora maculata. Note the pollen packets glued on the bee’s back. Photographed in Toledo District, Belize

Why are orchid bees so colorful? This question is a hard one to answer. The metallic color does not seem to have a clear function. However, it is important to note that not all orchid bees are colorful. While members of genera Euglossa, Exaerete and Aglae are flashy with colors ranging from gold, red and green to blue and violet, members of Eulaema and Eufriesea are less showy and sport dark colors and a thick coat of hairs, which make them look like fuzzy bumblebees.

Representatives of three Euglossini genera, left to right: Eulaema seabrai, Euglossa intersecta and Exaerete smaragdina.

Representatives of three Euglossini genera, left to right: Eulaema seabrai, Euglossa intersecta and Exaerete smaragdina.

Orchid bees are fascinating insects that can be observed safely without the need for special equipment or prior preparation. I would like to share with you something I like to do when I find a group of male bees in activity: I approach slowly and place my head close to their gathering spot. The bees are so busy closing in on the scent cone that they are not bothered by my presence. Then I close my eyes. The loud buzzing sounds piercing through the air make me feel like I am standing right in the middle of an insectopian highway. It is quite a unique sensation. Try it. You won’t regret.

Good times to celebrate the diversity of Amblypygi

For as long as I can remember, I have been fascinated by arachnids. Their high diversity, which includes a variety of morphological and behavioral adaptations, is impressive. It might be surprising though that my favorite arachnid group is not spiders, but a relatively small and not-so-diverse order: whip spiders (Amblypygi).

Juvenile Heterophrynus batesii from the Amazon rainforest in Ecuador. The bright coloration and cute proportions fade as the amblypygid grows older.

Juvenile Heterophrynus batesii from the Amazon rainforest in Ecuador. The bright coloration and cute proportions fade as the amblypygid grows older.

I find it amusing that despite my obsession with Amblypygi, I have not yet written anything about them. This website had a gallery of whip spider photos since day one, but I guess I have been waiting for a good opportunity to mention them on the blog, and there is no better time than right now. A recent publication by my colleagues, describing eight new species of whip spiders found in Brazil, has given this group the much-deserved public attention.

Charinus is a genus of relatively small-sized whip spiders with a worldwide distribution. New species are discovered almost annually (the species described in the above mentioned paper are all members of this genus). This one is another new species from Belize soon to be formally described.

Charinus is a genus of relatively small-sized whip spiders with a worldwide distribution. New species are discovered almost annually (the species described in the above mentioned paper are all members of this genus). This one is another new species from Belize soon to be formally described.

Despite their common name (see footnote †) and general appearance, whip spiders are very different from spiders. They cannot spin silk and therefore have no webs. Their first pair of legs has evolved into long, antennae-like sensory organs, which are used for navigation, detection and manipulation of prey, and social communication. It is ironic that what makes whip spiders so visually appealing to some people (myself included), is the same thing that makes them terrifying for other people: the raptorial pedipalps. Enlarged and armed with strong spines, the pedipalps are used as a catching basket for grabbing and impaling prey. They are also used in mating and fighting rituals. The long, spiny “grabbers” make many people cringe in fear at the sight of a whip spider. But make no mistake: these animals are completely harmless to us. They do not have venom, they cannot sting and never bite, and they will do whatever they can to avoid confrontation with a human. It is therefore unfortunate that whip spiders are often if not always used to provoke feelings of fear and disgust, as seen in TV programs such as “Fear Factor” and movies like “Harry Potter” (see footnote ‡).

Adult male Heterophrynus batesii with impressive pedipalp armature. This is the same species shown in the first photo above.

Adult male Heterophrynus batesii with impressive pedipalp armature. This is the same species shown in the first photo above.

Paraphrynus raptator feeding on an assassin bug. The spiny pedipalps are used to impale the prey and bring it closer to the mouth.

Paraphrynus raptator feeding on an assassin bug. The spiny pedipalps are used to impale the prey and bring it closer to the mouth.

For a shy animal, whip spiders sure pack a lot of character. This is something I will address in several future posts. But newly discovered species of whip spiders are always a cause for a celebration. The new paper puts Brazil in competition with Mexico for the title ‘Country with the highest diversity of Amblypygi’ (Brazil wins. For now). One of the possible explanations for the high diversity is the large continental area within the borders of each country, following a classic principle in Ecology that says species richness increases with area. Under the same principle, the smaller neighboring countries are expected to have less species, and this is indeed what we are seeing. Or is it? There might be another reason involved. Because the small order Amblypygi is of no economical and medical importance it is often understudied, so it is very possible that the low amblypygid diversity seen in other countries reflects a lack of research or difficulties in sampling. A similar trend can be found for other groups of organisms sharing the same attributes. It all points to a problem: basic natural history and taxonomic research is becoming less common and receives fewer support, while our conservation efforts aim higher every year. This creates a conflict – how can you protect something if you do not know about its existence? And indeed, the authors of the paper discuss the issue of conservation. The newly discovered whip spiders may already be endangered due to habitat destruction by humans. Nevertheless, their formal description gives them a valid status, and together with other native plants and animals in need of protection, this serves as an incentive for conservation of their natural habitat.

Juvenile Phrynus parvulus found on a moss-covered tree trunk in southern Belize

Juvenile Phrynus parvulus found on a moss-covered tree trunk in southern Belize


† There is a bit of a confusion around the common name for Amblypygi, as several different names exist. I prefer to call them amblypygids, referring to the scientific name of the group, but if I am forced to use a common name I go with whip spiders. One other frequently used common name is tailless-whip scorpions, which refers to their tailed relatives, the whip scorpions or vinegaroons, members of order Thelyphonida (formerly Uropygi). I completely disagree with the use of tailless whip scorpions as a name for Amblypygi. A large taxonomic group cannot be defined by something it does not have, unless this character is found by default in all other related groups. If you disagree, please consider why humans are not called “tailless monkeys”.

‡ One example in particular that I find infuriating is a series of videos recently turned viral, showing a person literally abusing whip spiders to the point that the animal has no choice but to attack using its pedipalps. Because of my deep interest in amblypygids these sickening videos have been forwarded to me multiple times by friends who thought I might like them. Interestingly, the person who made these videos actually loves arthropods, yet he seems to be unaware that his videos are spreading hate and misinformation towards these remarkable arachnids, not to mention the pointless abuse and stress of wild-caught animals (I have never gone after someone with the goal of publicly shaming them and will not mention any names; those who have seen the videos know the guy and what I am talking about).