Archives

Little Transformers: Forcipomyia, the midge that turns into a balloon

It is time to introduce another Little Transformer! I know what you are thinking. Am I ever going to run out material for these blog posts? Maybe. Probably not. As long as there are arthropods around, their life history and morphological diversity guarantees that I will always find examples for interesting deceptions and transformations. Up until now I mostly focused on animals that can change form quickly, assuming the appearance of something else as a defense response against predators and to avoid detection. The case presented in this post is a little different because it does not follow a quick change of form, but rather a slow one, over the course of a life stage. I should be cautious here, because under this definition every insect that goes through complete metamorphosis from larva to adult can be considered a Little Transformer (butterflies, beetles etc’). Even amphibians fall under this loose definition. And to some extent they ARE transformers, because the changes they go through during development are extreme. But this is not the topic for this series of posts. When I talk about a big change happening within a life stage, I mean that the animal starts as one thing, and by the end of the stage its appearance and function has changed into something else completely. And no example is better to show this than the parasitic midges of the genus Forcipomyia.

Biting midge (Forcipomyia sp.) feeding on the hemolymph of a moth caterpillar. Photographed in Belize

Biting midge (Forcipomyia sp.) feeding on the hemolymph of a moth caterpillar. Photographed in Belize

Here is the Forcipomyia midge with the whole caterpillar to give a better sense of scale

Here is the Forcipomyia midge with the whole caterpillar to give a better sense of scale

Forcipomyia is a large genus in the midge family Ceratopogonidae, with a worldwide distribution and diverse habitat preferences. There are now over 1,000 described species of Forcipomyia. The adults of some species are known as important pollinators of cacao and other plants of economic importance in tropical and subtropical areas. However, many species in the genus are blood-feeders, somewhat characteristic to ceratopogonids as the common name to the family suggests (biting midges). These parasites have interesting relationships with different insect hosts, and they can be found feeding on the hemolymph (insect blood) of grasshoppers, katydids, stick insects, butterflies, true bugs, and even skittish dragonflies. In fact, these interactions are so fascinating and overlooked, that only after spending some time in the field one can notice the midges have a preference for certain host species to feed from.

Sometimes the biting midges sneak into the photo without me noticing. I photographed these mating grasshoppers (Cloephoracris festae), but they have an accompanying Forcipomyia. Can you spot it?

Sometimes the biting midges sneak into the photo without me noticing. I photographed these mating grasshoppers (Cloephoracris festae), but they have an accompanying Forcipomyia. Can you spot it?

But let’s go back to the transformation they go through, because in one group of species, subgenus Microhelea, it is truly remarkable. The female Forcipomyia midge begins her adult stage with an active lifestyle. She flies about in the forest, feeding on nectar from small flowers. As days go by, she starts craving for blood and search for insects to bite. When she locates her preferred host, using her serrated mouthparts she proceeds to bite it in an area that has soft tissue: antennae, legs joints, wing veins, or between body segments. Once she found the right spot that will fulfill her dietary needs, the female midge attaches to it firmly, and… doesn’t let go, thanks to specialized claws on her feet. She sucks and gulps the insect’s blood, filtering the nutrients and secreting the excess fluids as clear droplets.

Tick fly (Forcipomyia sp.) feeding on the hemolymph of a walking stick

Tick fly (Forcipomyia sp.) feeding on the hemolymph of a walking stick

The midge stays attached like this for quite a while, and soon this sessile lifestyle starts taking its toll on the small parasite. She starts to put on weight. Then, she usually losses her wings – she will not need them anymore because the added mass from the developing eggs prevents her from taking off.

Female Forcipomyia swelling while feeding. She lost her wings but can still use her legs to hold firmly onto the host

Female Forcipomyia swelling while feeding. She lost her wings but can still use her legs to hold firmly onto the host

Forcipomyia getting fatter... but not quite there yet

Forcipomyia getting fatter… but not quite there yet

As she continues to swell like a grapefruit, the Forcipomyia midge also losses the ability to use her legs. She does not need to leave anyway, but she is so bloated that she cannot even hold onto the body of the host, and the only thing keeping the two connected are the midge’s mouthparts.

Female tick fly (Forcipomyia sp.) at the final stage of feeding. Her legs released their grip on the host and at this point the midge has fully transformed into a passive parasite that looks like a balloon.

Female tick fly (Forcipomyia sp.) at the final stage of feeding. Her legs released their grip on the host and at this point the midge has fully transformed into a passive parasite that looks like a balloon.

Stick insect (Pseudophasma bispinosum) carrying tick flies (Forcipomyia sp.) at different stages of feeding. Photographed in Ecuador

Stick insect (Pseudophasma bispinosum) carrying tick flies (Forcipomyia sp.) at different stages of feeding. Photographed in Ecuador

At this point, the engorged biting midge is no different than a tick, and indeed many refer to these parasitic Forcipomyia as tick-flies. Sometimes I like to imagine these fat dipterans disconnecting from their host and floating upwards like a balloon filled with helium, reaching above the forest canopy and flying into space. In reality, the exact opposite happens. The Forcipomyia female eventually leaves the host and drops to the ground, where she lays her eggs and finishes her role. And the male Forcipomyia? They are mostly unknown. Because males are never found feeding on insect hosts, it is safe to assume that they do not feed on blood, and prefer to keep a vegan diet of sweet nectar.

An engorged female tick fly (Forcipomyia sp.) after dropping from its host

An engorged female tick fly (Forcipomyia sp.) after dropping from its host

What about the larvae, are they parasites too? The majority of the research on biting midges has focused on the adults, due to their economic and medical significance, as well as their important role in aquatic ecosystems. Larvae of most ceratopogonids are unknown because finding them in their natural habitats can be challenging. They usually inhabit aquatic and semiaquatic habitats, but in the case of Forcipomyia the larvae are terrestrial and prefer to feed on moist detritus and organic matter under bark or in moss. In some species they feed on algae.

This stick insect is staring at me with tired eyes. I wonder if it is aware of the two hitchhikers it is carrying?

This stick insect is staring at me with tired eyes. I wonder if it is aware of the two hitchhikers it is carrying?

With so many aspects of their life history still unknown, and especially due to their ecological and economical importance, you would expect to see more active research on Forcipomyia. The bad news is that there is not enough research going on. A few years ago, I approached Dr. Stephen Marshall, a dipterologist from University of Guelph, and suggested doing a PhD study about Forcipomyia’s biology, phylogenetics, and their relationships with their hosts. I was politely refused, unfortunately. I still believe there is potential for a cool project involving Forcipomyia, maybe someone will pursue it in the future.

Little Transformers: Lamprosoma, the living Christmas ornament

Ah, the joy of transforming beetles. The first Little Transformer that opened this series of posts was a beetle – a Ceratocanthinae pill scarab that transforms into a perfect sphere and drops off to escape predators. It is an impressive evolutionary achievement that merges a successful body design and anti-predator behavior. I should mention though that many beetle species from other families use this strategy to avoid predation, some more successfully than others. One such example is a genus of small beetles from the leaf beetle family (Chrysomelidae): Lamprosoma.

Shiny leaf beetle (Lamprosoma sp.) from the Ecuadorian Amazon

Shiny leaf beetle (Lamprosoma sp.) from the Ecuadorian Amazon

When I first encountered a Lamprosoma beetle I thought it was a piece of plastic that someone discarded in the rainforest. There is something almost artificial about their appearance, shiny metallic colors combined with a compact shape. Not all species are colorful, by the way. The genus contains about 130 species, all with a neotropical distribution, some of which are completely black in color. With a body length of less than 1cm they are easy to miss in the dense vegetation of the tropical forest. Nevertheless, over the years I have encountered them more and more frequently. Unfortunately for me, identifying these beetles to the species level requires an expertise that I do not have, because there are many similar-looking species, and possibly also new species that have not been described yet.

Shiny leaf beetle (Lamprosoma sp.) from Honduras

Shiny leaf beetle (Lamprosoma sp.) from Honduras

The beetles are dome-shaped, and have very short legs. I think “cute” is the best way to describe them. As mentioned above, Lamprosoma can transform into a ball when threatened. In contrast to Ceratocanthinae beetles that have dedicated grooves to hold the legs and head in place, members of genus Lamprosoma have no such features. The beetle tucks in its head and holds its legs tightly close to its body, making it a neat impenetrable package.

Shiny leaf beetle (Lamprosoma sp.), a ventral view showing how neatly they press their legs against the body when forming the ball

Shiny leaf beetle (Lamprosoma sp.), a ventral view showing how neatly they press their legs against the body when forming the ball

Shiny leaf beetle (Lamprosoma sp.) in ball-mode. Mimicking a Christmas ornament.

Shiny leaf beetle (Lamprosoma sp.) in ball-mode. Mimicking a Christmas ornament.

In species with shiny metallic colors it is hard not to see the resemblance to the glass balls used as Christmas ornaments (maybe an idea for a future product?). Once the danger is out of sight, the beetle loosens its legs and walks away.

Shiny leaf beetle (Lamprosoma sp.) transformation sequence from ball-mode to beetle-mode. How can you not fall in love with those stubby feet?

Shiny leaf beetle (Lamprosoma sp.) transformation sequence from ball-mode to beetle-mode. How can you not fall in love with those stubby feet?

Lamprosoma are phytophagous beetles, meaning that they feed on plants. Both adults and larvae feed on leaves, and can be potential pests due to damage they can cause to foliage. The species shown here seem to be associated with cacao trees, and were found under leaves during the day. While the adults are very showy, the larvae are cryptic to avoid predators: they construct a case from frass and wood debris, and carry it around throughout their lifetime. The case is often shaped like a bent thorn, and blends perfectly with the branches the larvae live on. When threatened the larva retreat into the case and hold it firmly against the branch, preventing predators (such as ants and wasps) from accessing inside.

Another example of Lamprosoma sp. in ball-mode

Another example of Lamprosoma sp. in ball-mode

Shiny leaf beetle (Lamprosoma sp.). Full beetle-mode!

Shiny leaf beetle (Lamprosoma sp.). Full beetle-mode!

Little Transformers: Myrmarachne formicaria

Little Transformers is back! And this time our star is a small jumping spider that goes out of its way to masquerade as an ant.

I am often accused for not writing about topics related to Canada on this blog. While this is not entirely true, I could have without doubt posted more about local critters. It is a great time to do so now, as I will be taking the opportunity to address several events.
Firstly, it is now October, and we are getting closer and closer to Halloween (Oct 31st). Nine years ago, the Arachtober initiative was born: why wait till the end of the month to celebrate spiders? Let’s celebrate them and other arachnids throughout the entire month of October! And so, during the month of October we give arachnids more exposure in hopes to educate the general public about these magnificent and important creatures.
Secondly, a new initiative is slowly forming, International Jumping Spider Day, on October 10th. The idea is to use the easily adored jumping spiders as the gateway arachnid for changing the often-negative public perception of spiders. I wholeheartedly support this idea and hope to see it catching on.
Lastly, a shameless plug: You may have noticed that this blog is nominated for the 2017 People’s Choice Awards: Canada’s Favourite Science Online. It is a huge honor to be included with other excellent science blogs and sites on the same list. If you like the content and stories that I post, you can show your appreciation by voting following this link. I wish to thank those who already voted in support of this blog. While this nomination has nothing to do with spiders, I thought it is a great opportunity to write a blog post about an arthropod found in Canada.

Female ant-mimicking jumping spider (Myrmarachne formicaria) wants your attention

Female ant-mimicking jumping spider (Myrmarachne formicaria) wants your attention

After this short introduction, it is time to present our first local Little Transformer, the ant-mimicking jumping spider Myrmarachne formicaria. It is one of the nicest looking spiders here in Ontario, and it is surprisingly abundant in its habitat. Alas, there is a small catch here. While this jumping spider is local, it is not native to Canada. This species was first detected in North America in 2001, and later established in Tommy Thompson Park in Toronto in 2015. It originates in the Palearctic region, more specifically Europe and Asia. Despite this, these spiders feel right at home in Toronto, as it seems that they are spreading away from the park containing the main population. This year, Sean McCann recorded Myrmarachne in Scarborough (east Toronto), and I found them in Mississauga (west of Toronto).

Female ant-mimicking jumping spider (Myrmarachne formicaria) masquerading as an ant

Female ant-mimicking jumping spider (Myrmarachne formicaria) masquerading as an ant

Myrmarachne formicaria is an elongated jumping spider that takes the appearance of a small ant, and here in Ontario it is associated with the European fire ant, Myrmica rubra, also an introduced species. Isn’t it interesting how these two non-native species managed to find each other on unfamiliar land? The spider has long and slender legs just like those of an ant, and the banded forelegs are slightly thicker to resemble antennae. The cephalothorax has a depression to echo the segmentation in ants separating head from thorax. The abdomen is long with a narrow connection to the cephalothorax, reminiscent of an ant’s petiole. Surprisingly, in this species the pedipalps (normally a distinguishing character between males and females) are swollen in females, a trait usually seen only in males. Males on the other hand have enormous toothed chelicerae that stick right out of their faces. I suspected this is a sexually selected trait used in fights for females, and this was later confirmed by Sean McCann (check out his amazing shots here).

Female ant-mimicking jumping spiders (Myrmarachne formicaria) have swollen pedipalps

Female ant-mimicking jumping spiders (Myrmarachne formicaria) have swollen pedipalps

Male duck-mimicking jumping spide... um, excuse me ANT-mimicking jumping spider. Quack quack.

Male duck-mimicking jumping spide… um, excuse me ANT-mimicking jumping spider. Quack quack.

This begs the question, why do Myrmarachne spiders look like ants? Do the spiders use their appearance to fool the ants into thinking they are members of their own colony in order to sneak up on them and prey on ant workers or larvae? Not really. For starters, the ant species approached by Myrmarachne formicaria are usually not visual creatures. They rely more on their chemical communication, using volatile pheromones, for navigation and recognition. Moreover, the spiders seem to deliberately avoid any contact with the ant workers. They may walk among the ants, but they always keep their distance from them. In fact, when I experimented and isolated a few spiders within a group of ants, the spiders chose to stay still, and only when the path was clear they made a run for it. I also noticed that the ants display an aggressive response when encountering a spider. So the ants are not the target of this mimicry. Who is? Us. Or more precisely, predators. You see, the spider not only looks like an ant and spend its time close to the ants, it also moves like an ant.

Myrmarachne formicaria always keep a safe distance from Myrmica rubra workers

Myrmarachne formicaria always keep a safe distance from Myrmica rubra workers

A recent study looked into the locomotion of Myrmarachne formicaria jumping spiders and found that they do not move like their peers. First of all, instead of jumping like most salticid spiders, they move forward in a series of short sprints. But they also move in a pattern that resembles the movement of ants following a pheromone trail, back and forth in a winding wave motion, instead of random strolling and stopping often we see in other spiders. If it looks like an ant and moves like an ant… it might be good enough to fool predators that it is an ant. And I can attest to this – it is extremely difficult to keep track of a Myrmarachne spider moving about in an area with ant activity. Look away, and you will need all the luck in the world to find it again. The spiders also benefit from being close to a colony of highly defensive ants. Myrmica rubra is easily alarmed and has its reputation when it comes to stinging intruders.

Some Myrmarachne formicaria feature a two-colored cephalothorax, to emphasize the part that mimics the ant's head

Some Myrmarachne formicaria feature a two-colored cephalothorax, to emphasize the part that mimics the ant’s head

If they do not hunt the ants, what do these spiders feed on? They seem to go after soft-bodied insects, and they are especially fond of dipterans: small flies, mosquitoes, midges etc’.

Male ant-mimicking jumping spider (Myrmarachne formicaria) feeding on a chironomid midge

Male ant-mimicking jumping spider (Myrmarachne formicaria) feeding on a chironomid midge

A closer look at the feeding Myrmarachne male reveals the weaponized chelicerae, used in fighting other males

A closer look at the feeding Myrmarachne male reveals the weaponized chelicerae, used in fighting other males

At this point you might ask yourself why I included this jumping spider in my Little Transformers series. Sure, it mimics an ant, but that’s it. Or is it? In order to qualify as a Little Transformer the arthropod needs to change something in its appearance to transform into something different. So far we have seen that these spiders move in an atypical fashion to jumping spiders. But there is one more thing they do to conceal their salticid identity. What is the one, fail-safe characteristic of jumping spiders? Those huge front eyes! If only the spider could hide them, it would look like the perfect ant. And they do exactly that.

I look at this spider and I see an ant staring back at me.

I look at this spider and I see an ant staring back at me.

Myrmarachne often wave their forelegs in the air to mimic the ants’ antennae, but the legs also hide their most recognizable feature, the bulging front eyes. Females seem to do a better job at this than males, transforming into ants right before our eyes.

Male ant-mimicking jumping spider (Myrmarachne formicaria). Even on a side-view I still see a weird duck...

Male ant-mimicking jumping spider (Myrmarachne formicaria). Even on a side-view I still see a weird duck…

What is most intriguing here is that the rear pair of eyes evolved to be very large, bearing a striking resemblance in their size and position to ant eyes.

Ant-mimicry is quite common among arthropds, and many species of jumping spiders deploy this strategy as an anti-predator defense or to assist in foraging. While some do not consider Myrmarachne formicaria as a case of perfect mimicry, it is a gorgeous spider with intriguing behavior. Besides, mimicry does not have to be perfect to satisfy our aesthetic desires. It only has to be good enough to benefit the spider’s survival.

Little Transformers: Dysodius

When I first came up with the idea of Little Transformers, what I had in mind were insects that can masquerade as other objects by changing their appearance or behavior. I consider myself a “mild” Transformers fan: I like the concept of entities taking the form of other things, very much like how mimicry or camouflage work in nature. I have said before that I am not a fan of the current iteration of Transformers, those movies are so bad. However, I am going to take advantage of the upcoming release of the new Transformers movie (and I cannot believe I am using this as my reasoning) to post about yet another Little Transformer. This one does not really transform though, but it sure looks like one of the robots in those films. While I am not sure who is behind the designs for the robots, it was clear right from the start that there is some insectoid perspective to their appearance. I have always preferred the simple “blocky” design of the original cartoon show, but I can see how that would not look very realistic.

As mentioned above, our Little Transformer may not pass as the best example for a mode-changer, but it has an alien-like appearance. Meet Dysodius, a bark bug that belongs to the family of flatbugs, Aradidae.

Bark bug (Dysodius lunatus) crawling on a fallen log. Amazon Basin, Ecuador

Bark bug (Dysodius lunatus) crawling on a fallen log. Amazon Basin, Ecuador

Aradidae are cryptic insects, spending most of their time hidden on or under bark, and inside fallen logs. They feed on fungi: at nighttime both adults and nymphs can be seen aggregating near fruit bodies of mushrooms, sticking their proboscis into the soft flesh. It is a fungi cocktail party, and everyone is invited! Some species of Aradidae even display parental care and protect their offspring. Aradids are incredibly flat, a character that helps them to squeeze into tight crevices and take advantage of the complex habitat that is the bark’s surface, in order to remain hidden from the ever-searching eyes of predators.

Lateral view of a bark bug (Dysodius lunatus). So flat it could sit comfortably inside a paper envelope.

Lateral view of a bark bug (Dysodius lunatus). So flat it could sit comfortably inside a paper envelope.

Members of genus Dysodius are particularly interesting because of the their unique body structure, featuring curved lobes protruding from the pronotum and a crown of “fins” surrounding their abdominal segments. They also have tiny wings, so tiny that it makes me wonder if these wings are truly functional and can create enough force to lift the insect off the ground.

Bark bug (Dysodius lunatus), dorsal view

Bark bug (Dysodius lunatus), dorsal view

Dysodius are also very slow animals. They usually rely on their excellent camouflage rather than speed to avoid threats.

Bark bug (Dysodius lunatus) camouflaged on a fallen log

Bark bug (Dysodius lunatus) camouflaged on a fallen log

Their body surface is rough and often mottled with moss-like splotches. It is also wettable just like tree bark, in other words the colors get darker when getting wet by rain (unlike the water-repellent integument of other bugs), ensuring that the insect is still camouflaged even in rainy conditions.

Bark bugs (Dysodius spp.) from Belize (left) and Ecuador (right) demonstrating different coloration and textures of the body surface.

Bark bugs (Dysodius spp.) from Belize (left) and Ecuador (right) demonstrating different coloration and textures of the body surface.

This begs the question why am I including Dysodius in the Little Transformers series? After all, these insects are already “transformed” and do not change their appearance any further. They already look like a piece of bark. To understand why they are mentioned within these posts, you need to view them from the underside.

Bark bug (Dysodius lunatus), facial view. Am I the only one seeing a robot here?

Bark bug (Dysodius lunatus), facial view. Am I the only one seeing a robot here?

Aradidae, and Dysodius in particular, have one of the most robotic faces in the entire insect world, a face that could easily fit in the current Transformers movie franchise.
If you are not convinced yet, here is a closer look.

Portrait of a bark bug (Dysodius lunatus)

Portrait of a bark bug (Dysodius lunatus)

So if you think the Transformers movies are cool, insects do it better and have been doing it for far longer time. How does that quote from the trailer go?

“A thousand years we’ve kept it hidden. The secret history of Transformers…”

It was hidden all right. But not anymore. I am slowly unearthing this secret, exposing the existence of Transformers right here under our nose. You’re welcome.

Little Transformers: Pycnopalpa bicordata

It comes as no surprise that the first two “Little Transformers” presented on this blog were beetles. Many beetles are capable of folding, taking the shape of different structures, whether it is for camouflage or as a means of defense against predators. I will surely present more examples of transforming beetles in future posts. However, there are other insects out there that have the same transformation ability. I had the fortune of meeting one of those insects while staying at a jungle lodge in Honduras. My visit was in the middle of a dry spell and insects were surprisingly scarce. Many of the hikes I took in the rainforest were unfruitful. In my frustration I decided to check the screen windows outside a nearby facility because sometimes insects decide to rest on the mesh. I did spot a few nice finds, and then, I saw this.

"It's a bird! It's a plane!"

“It’s a bird! It’s a plane!”

My first thought was ‘that is one weird-looking moth’.
Let me explain.
My entomologist mind is on a constant search to find familiar patterns in objects that I see, because in the tropics deception is lurking everywhere. What I saw first was the animal’s shape and took it immediately for a winged insect. Then the coloration and the pose reminded me of some Erebidae moths (for example, genus Eutelia).
It took me a couple of short attempts to refocus my eyes on what is important before I could see that this is not a moth at all.

Now that the insect is off the net, we can take a better look. Dorsal view.

Now that the insect is off the net, we can take a better look. Dorsal view.

Another view of this amazing insect

Another view of this amazing insect

This is in fact a katydid nymph, Pycnopalpa bicordata, and it is so good at what it does that I was not able to locate it much later as it was sitting among fallen leaves in the vial I put it into. Whenever it is inactive it will assume this position, blending in with tree bark or leaf litter in the forest understory. Whether it resembles a moth or not is a matter of personal opinion at this point, because unless there is concrete evidence for an unpalatable moth model that this katydid is mimicking, the body posture this katydid takes can be within a different context altogether, such as a shredded fallen leaf or something similar.

Viewing from the side reveals that this is a leaf-mimicking katydid nymph (Pycnopalpa bicordata) at rest

Viewing from the side reveals that this is a leaf-mimicking katydid nymph (Pycnopalpa bicordata) at rest

The nymph (Pycnopalpa bicordata) in full katydid-mode

The nymph (Pycnopalpa bicordata) in full katydid-mode

Leaf-mimicking katydid nymph (Pycnopalpa bicordata). Clever girl!

Leaf-mimicking katydid nymph (Pycnopalpa bicordata). Clever girl!

As mentioned above, this is a nymph. A juvenile female to be more accurate, as can be seen by her sickle-shaped ovipositor. So what does the adult katydid look like? I was expecting some mind-blowing leaf appearance; maybe with flattened fins and spines on the legs, to mimic a dried leaf chewed up to its veins. You can safely say that I was exaggerating, and in the end when the nymph molted to its adult stage I was rather disappointed.

The adult Pycnopalpa bicordata is a delicate leaf-mimicking katydid. This one is a male.

The adult Pycnopalpa bicordata is a delicate leaf-mimicking katydid. This one is a male.

The adult Pycnopalpa bicordata is a very delicate insect with no major body modifications for mimicry or camouflage. Yes, it still looks very much like a leaf – having vivid green wings with transparent cells surrounded with brown margins, representing consumed parts or sunburn damage to leaf tissue. But the adult stage pales in comparison to the ingenious structural design of the nymph. Still, it is very nice to find Little Transformers outside the realm of Coleoptera. Moreover, among the orthopterans, I can think of at least one additional species of katydid and several grasshoppers that fall under my definition for Little Transformers. Hopefully we will get to learn about them in future posts.

Little Transformers: Eburia pedestris

We are back to celebrate little transformers: insects that are more than meets the eye. In this post I feature an insect whose transformation may seem a little awkward at first. It is not of cryptic nature, and it is not a case of mimicry.

While doing research about whip spiders in Belize, I also surveyed the insect biodiversity of one site, and so made sure to visit the light traps that we set up in several spots. The traps attracted an impressive diversity of insects, including moths, leafhoppers, ants, mantids, and katydids. One night a beautiful longhorn beetle (family Cerambycidae) showed up at the light trap. I did not recognize it at first so I collected it for a short Meet Your Neighbours session.

Longhorn beetle (Eburia pedestris) from Belize

Longhorn beetle (Eburia pedestris) from Belize

It was Eburia pedestris, a member in a genus of hardwood-boring longhorn beetles with a wide distribution in the Americas. I took a few decent shots. The beetle was trying to escape of course, so I reached out to grab it before it fell from the acrylic sheet. The moment I touched it something interesting happened. It crossed its legs and took a sitting position. I could not help it and I sneaked a loud laugh, because it looked like the beetle was in the middle of a yoga practice. It stayed in this comical position for a while, so I took some additional shots.

Longhorn beetle (Eburia pedestris) just sitting around

Longhorn beetle (Eburia pedestris) just sitting around

Another view of the strange pose taken by Eburia pedestris

Another view of the strange pose taken by Eburia pedestris

The strange position did not make a lot of sense to me, but I thought maybe it was a more elaborate way of playing dead, a common behavior in many beetle families (which will probably be featured more than once in this series). I finally decided not to wait for the cerambycid to “open up” so I grabbed it in my hand to put it back into the vial before releasing it outside. And then it hit me.

I mean, it literally hit me.
I felt my hand being pierced in several spots. Blood was dripping from my fingers.
You see, there is a reason why Eburia beetles take this unusual body posture. Look at the beetle’s leg joints and at the tips of the elytra. By taking a “sitting” pose, the beetle transforms into a prickly business, pointing sharp spikes in all directions, making it difficult for large predators like myself to handle the beetle. It will also not hesitate to use its other cold weapon: biting mandibles. Something I only noticed much later when I examined the photos – notice how the beetle contracts its abdomen, to make the elytral spines more prominent. Even with caution it was difficult not to get your skin punctured by the spines. They are as sharp as syringes. I would not want to imagine the experience for a mammal trying to eat this beetle. Ouch.

Longhorn beetle (Eburia pedestris) in defense posture. Grab it if you can.

Longhorn beetle (Eburia pedestris) in defense posture. Grab it if you can.

Some insects prove to us that avoiding predators is not all about hiding, mimicking other organisms, and advertising toxicity or potent venom. There are other, more creative ways to survive in the jungle out there. I will even take it a step further and say this Eburia beetle is comparable to the armadillo girdled lizard in its behavior. Nature is so awesome.

Little Transformers: Ceratocanthinae beetles

If you missed my subliminal message in the last two sentences of the previous post, I am not done yet with the Transformers. I was building up to this exact moment. You see, insecticons ARE everywhere. Maybe not in the same context as depicted on the TV series, but still there are creatures out there that are more than meets the eye. A substantial part of their existence relies on fooling predators into thinking they are something else: an inanimate object, another animal, or something completely different. I am happy to introduce “Little Transformers”, a new section on the blog, in which I will present interesting cases of insects in disguise.

We are launching this series with the beetle that started it all – the pill scarab (member of subfamily Ceratocanthinae). If you run an internet search with the words “transformer” and “insect”, there is a high chance that one of the results will be an image created by Kenji Nishida, showing a small beetle from Costa Rica transforming from a ball-mode to beetle-mode. The image has gone viral soon after being posted online, and now that Ceratocanthus beetle is fairly recognized by title as the beetle transformer. I have posted an image of a similar beetle before on this blog, a Ceratocanthus species I found in Belize. It was featured in an excellent phylogenetic paper about this subfamily by Alberto Ballerio and Vasily Grebennikov, and even made it to the journal’s cover. I recommend checking the paper out, even if you are not interested in these beetles, you can enjoy the beautiful images showing the impressive diversity of the group.

Pill scarab beetle (Ceratocanthus sp.) from Belize, showing the spherical alternative mode typical to members of Ceratocanthinae

Pill scarab beetle (Ceratocanthus sp.) from Belize, showing the spherical alternative mode typical to members of Ceratocanthinae

Ceratocanthinae are a subfamily of Hybosoridae within the Scarabaeoidea beetle group, containing over 360 described species, most of which are small in size (just a few millimeters in length). They have a wide distribution range mainly in tropical regions throughout the world, with only a few genera and species recorded close to temperate regions. Ceratocanthinae also occupy different types of habitats. The highest diversity seems to be in new world rainforests, but they also occur in temperate forests, subtropical forests, savannahs, and even in coastal deserts. Adult Ceratocanthinae are best known for their ability to conglobate: rolling into a nearly perfect ball. The elytra, pronotum, head, and all six tibiae interlock with each other by means of grooves and corresponding ridges, forming a tightly connected external surface. Many beetles take the form of a tight compact structure when threatened, however in Ceratocanthinae the tibiae of all six legs participate in forming the external hard surface of the sphere, unlike in other beetles.

Ceratocanthus sp. transformation sequence from ball-mode to beetle-mode

Ceratocanthus sp. transformation sequence from ball-mode to beetle-mode

It is fascinating to observe these beetles transform to and from their alternative mode. Nancy Miorelli, an entomologist and science communicator living in the Maquipucuna reserve in Ecuador, recently recorded a video showing the beetle opening up (by the way, Nancy also creates beautiful jewelry from insect wings and Tagua nut with the proceedings supporting rainforest conservation and the local community. You can check out her shop here).

Why do they do this? The ability to roll into a tight compact structure probably has anti-predatory and physiological advantages, such as moisture retention or thermoregulation. It seems that the primary use is as a form of crypsis, to avoid detection by nearby predators, however after following several beetles in the wild I noticed that they stay transformed into the ball-mode even when they are not active; perhaps it is a way for them to rest too.

Pill scarab beetle (Ceratocanthus sp.) from southern Belize. Full beetle-mode!

Pill scarab beetle (Ceratocanthus sp.) from southern Belize. Full beetle-mode!

Unfortunately, very little is known about the biology of Ceratocanthinae. They are sometimes found under bark, in tree holes, and in decomposing wood. Several records report adults and larvae that have been found in termite nests. However, It is unclear whether Ceratocanthinae are termitophilous and have a relationship with the termite hosts. The ability to roll into a ball can serve as a defense and might be an adaptation for living in the hostile environment of a termite nest. Another suggestion defines the beetles as termitariophilous, in other words attracted to the properties of the termite nest itself as opposed to its inhabitants. While the feeding habits of Ceratocanthinae are mostly unknown, a handful of observations report adults feeding on various fungi. It is therefore possible that Ceratocanthinae are attracted to some of the fungi growing on the surface of termite nests. This can explain the presence of the beetles in the nests, but unfortunately without additional data about the beetles’ life history it would be difficult to validate this connection.

So the next time you are out in the field and you stumble upon a tiny sphere in a peculiar place, take a closer look. If it looks like a beetle mummy, then bingo! You have a Little Transformer. Now all you need to do is wait for it to open up… Patience. Lots of patience.

Insect art: Transformers and other insect mecha

In my previous post I discussed the use of insects in Japanese anime. There are many other fascinating examples of insects being featured in cartoons, but I cannot leave the subject without mentioning one specific example that is somewhat related: The Transformers.

"Look! There is some interesting text written down there"

“Look! There is some interesting text written down there”

"Yes! Let's check it out!"

“Yes! Let’s check it out!”

I grew up in the 1980’s, a time when giant robots were popular among kids. The Transformers was one such franchise, telling the story of two races of transforming robots fighting each other, who one day end up stranded on earth. Despite its apparent novelty, it was not the first show to come up with the idea of robots that can change form into vehicles and other objects; the same concept was already in use by other animated mecha shows like Gobots, Voltron, Macross etc’. Nevertheless, The Transformers had the largest variety of shape-shifting robots compared to its competitors. It is important to remember that at its core, The Transformers cartoon series was meant to promote the sale of toys created by the Japanese manufacturer Takara and licensed to Hasbro in the US. New characters were introduced continuously on the show, corresponding to new toy models being released. Soon enough, The Transformers became a huge success, attracting a large crowd of followers. Together with its toy lines, unique animation style, and recognizable sound effects, it coined catchphrases like “More than Meets the Eye” and “Robots in Disguise”. Now, over 30 years after its first launch, it is still growing as a franchise.

I look at this image and I see toys. So many toys.

I look at this image and I see toys. So many toys.

To make things clear, I am not a hardcore Transformers fan. I do not collect the toys, and I am not too obsessed with the cartoon. I also do not care much for the recent reboot of the franchise in live-actions films, but I am not their target audience anyway. To put it more simply, I love the idea of transforming robots for exactly what it is – creatures trying to disguise themselves as something else. You can imagine my excitement as a kid when I found out about the Transformers’ line of robot insects: the insecticons.

As a young naturalist I learned that insects try to hide or disguise themselves all the time. It seemed natural to me (and I must admit, also very cool) that insects inspired the design of some of the Transformers characters. Although the thought of giant robots from another planet taking the form of insects may come as a surprise, does it really? Insects already look bulky, and their movements are often described as mechanical, thanks to their restricting exoskeleton. I think the idea of robot insects is as straightforward and predictable as it can be.

The insecticons Kickback, Shrapnel and Bombshell in their insect modes

The insecticons Kickback, Shrapnel and Bombshell in their insect modes

The insecticons were introduced early in the Transformers series, in the episode A Plague of Insecticons. The group included three members: Shrapnel, the gang’s leader who can also control lightning, was modeled after a stag beetle; Bombshell, who can mind-control other robots by using capsules, transforms into a weevil; and Kickback, a robotic locust. Some of the show’s fans will probably try to correct me that Bombshell is supposed to be a Japanese rhinoceros beetle, however the design of his snout complete with two antennae-like projections, along with the way he uses it in his insect mode, suggest he is a weevil. In addition, the insecticons were supposed to portray insect pests; they had the ability to multiply and form swarms, consuming crops and energy resources in their path. Pest locusts and weevils are well known. As to why a stag beetle was chosen to represent a pest species, that is indeed a good question.

The insecticons swarm on its way to defoliate a crop field. Oh, Kickback. Why are you so cute?

The insecticons swarm on its way to defoliate a crop field. Oh, Kickback. Why are you so cute?

"Silly farmers. Thanks for growing our food!"

“Silly farmers. Thanks for growing our food!”

I love this comic artwork showing Kickback's locust swarm. It is an excellent depiction of our helplessness not only against giant menacing robots, but also the unpredictability of catastrophic natural phenomena.

I love this comic artwork showing Kickback’s locust swarm. It is an excellent depiction of our helplessness not only against giant menacing robots, but also the unpredictability of catastrophic natural phenomena.

By the time The Transformers were popular as a TV series and a toy line, they released several other insect robots toys known as “Deluxe insecticons”. These colorful figures were never featured on the animated show due to a licensing issue, but they appeared in the comics.

One of the first appearances of the Deluxe insecticons in the Transformers comics

One of the first appearances of the Deluxe insecticons in the Transformers comics

The Deluxe insecticons included a Japanese rhinoceros beetle (Allomyrina dichotoma) called Barrage, another stag beetle named Chop Shop, a grasshopper named Ransack, and Venom – a cicada. You can definitely see the influence of Japanese culture reflecting in these insect mode choices.

Barrage and Chop Chop. The Deluxe insecticons were not exactly loyal to each other.

Barrage and Chop Shop. The Deluxe insecticons were not exactly loyal to each other.

Deluxe insecticons Venom and Barrage. I love how they designed Venom to have sucking mouthparts, a proboscis, in his insect mode, just like a real cicada.

Deluxe insecticons Venom and Barrage. I love how they designed Venom to have sucking mouthparts, a proboscis, in his insect mode, just like a real cicada.

Despite their bright color palette, the Deluxe insecticons were more similar in their appearance to real-life insects than the original insecticons. The only figure I have issues with is Ransack: With his black and yellow coloration he is supposed to represent a gregarious morph of the desert locust Schistocerca gregaria, but his colors make him look more like Aganacris velutina, a wasp-mimicking katydid.

Deluxe insecticons Ransack and Barrage in mid-fight

Deluxe insecticons Ransack and Barrage in mid-fight

There is a small a history lesson here too: Despite their late addition to the franchise, the Deluxe insecticons were not really new characters. They were designs borrowed from another Japanese franchise by the name of Beetras: Armored Insect Battalion, manufactured by the Japanese company Takatoku Toys. The Beetras story revolved around five young warriors who pilot insectoid mecha to protect earth from threats. I like this idea of humans using insectoid vehicles to perform different tasks. Anyone who has stumbled upon the photo of John Deer’s Walking Harvester will know what I am talking about. However, shortly after the Beetras toy line was released in 1984, Takatoku Toys went bankrupt. The toy molds were sold to Bandai, another toy manufacturer who then licensed them to Hasbro, and those would later become the Deluxe insecticons. I much prefer the original Beetras color scheme of the robots as opposed to the brightly colored deluxe insecticons. The Beetras colors appear more natural and closer to what insects look like in real life.

The insecticons toys presented in the 1985 catalog. The original insecticons can be seen at the bottom, while the Deluxe insecticons, still sporting their Beetras coloration, at the top.

The insecticons toys presented in the 1985 catalog. The original insecticons can be seen at the bottom, while the Deluxe insecticons, still sporting their Beetras coloration, at the top.

The Deluxe insecticons toy line in the 1986 catalog, now with their reissued colors.

The Deluxe insecticons toy line in the 1986 catalog, now with their reissued colors.

Going over the Beetras robot designs reveals that there were several additional characters in planning – a Hercules beetle, yet another stag beetle, and a ladybird beetle (a female robot toy, which at the time was quite unusual). Unfortunately, these characters never made it through to the production stage.

The Beetras planned toy line from 1984. This could have been such a great series.

The Beetras planned toy line from 1984. This could have been such a great series.

If there is anything that the insecticons have taught us, it is that good things are only temporary. Like many good Transformers characters, the insecticons’ fate was to fade from existence. They were hit, run over, and eventually killed off during the events of Transformers: The Movie in 1986.

Kickback being run over by a vehicle. The poor guy can be seen trying to cover his head and antennae just before the impact. I can feel for him.

Kickback being run over by a vehicle. The poor guy can be seen trying to cover his head and antennae just before the impact. I can feel for him.

Although they never returned to the animated series, their legacy still lives on in the form of toys, with interesting reissues from time to time. In my opinion the insecticons were a great idea that never really reached its full potential. They left much to be desired. Maybe we will see them again one day, after all insects are all around us.

Soundwave releases tiny insecticons for a mission. Maybe there are still some little transformers out there?

Soundwave releases tiny insecticons for a mission. Maybe there are still some little transformers out there?

—————————————————————————-
* This post makes use of copyrighted material for the purpose of commentary under fair use.